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Example-based texture synthesis has been an active research problem for
over two decades. Still, synthesizing textures with non-local structures re-
mains a challenge. In this paper, we present a texture synthesis technique
that builds upon convolutional neural networks and extracted statistics of
pre-trained deep features. We introduce a structural energy, based on cor-
relations among deep features, which capture the self-similarities and regu-
larities characterizing the texture. Specifically, we show that our technique
can synthesize textures that have structures of various scales, local and non-
local, and the combination of the two.
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1. INTRODUCTION

Example-based texture synthesis has been an active research area in
the last two decades. Many methods have been developed for syn-
thesizing a texture that is visually similar to a given input texture
sample [Wei et al. 2009]. Parametric methods [Heeger and Bergen
1995] deal well with stationary and homogeneous textures, but are
limited in their ability to analyse and synthesize structures. Non-
parametric methods [Efros and Leung 1999; Wei and Levoy 2000;
Efros and Freeman 2001] can handle small scale structures by em-
ploying patches large enough to capture the local structures. Simi-
larly, optimization-based methods [Wexler et al. 2004; Kwatra et al.
2005] can mainly handle structures that can be represented within
the patch size. Still, synthesizing textures with non-local structures
is challenging.

Recently, Gatys et al. [2015] presented a new type of texture syn-
thesis technique which is based on convolutional neural networks
and extracted statistics of pre-trained deep features. In this paper,
we present a texture synthesis technique that builds upon their ap-
proach, and can deal with structured textures. The premise of our
work is that textures are inherently characterized by strong self-
similarities and regularities. The core idea of our work is a struc-
tural energy that captures these regularities. We introduce a struc-
tural matrix, which represents deep correlation among deep fea-
tures. Figure 1 shows the results of our synthesis algorithm applied
to structural textures of various scales. The results are compared
side by side with the result of a recent advanced patch-based opti-
mization [Kaspar et al. 2015]. Note how the non-local structures of
the input exemplar, as well as the local ones, are synthesized well
by our deep correlations.

The deep correlation that we introduce is closely related to au-
tocorrelation which reflects regularities in a signal. However, the
deep correlation that we introduce is tuned to be more sensitive to
the underlying structure of the texture. Figure 2 shows a compar-
ison between the autocorrelation matrix and the structural matrix

@) ®) ©

Fig. 1: Synthesis of textures of various structural scales. (a) the
texture exemplars; (b) our results with deep correlations, and (c)
results with the patch-based optimization of Kaspar et al. [2015].

of the deep correlation. Clearly, the structural matrix better reflects
the structural regularities. We show that based on these structural
matrices of deep correlations we can synthesize a given texture,
possibly with regular structures, by optimization, where the objec-
tive function is driven by the energy of the structural matrix of the
texture sample.

An important property of the structural matrices is that they do
not explicitly enforce specific image content (edges, corners, etc.)
to appear in specific locations. The gist of our approach is that the
structural energy does not encode image coordinates, but relative
offsets among features, enabling generating textures that are visu-
ally and structurally similar to the exemplar. Unlike previous meth-
ods where the scale of a patch determines the scale of the target
structure, here, our method has no parameters to control the scale
of the target structure. Specifically, as shown in Figure 1 our tech-
nique can synthesize textures that have structures of various scales,
local and non-local, and the combination of the two (note the small
scale tiles of various sizes in the three examples and the non-local
diagonal patterns or the graffiti in the middle row).
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Fig. 2: Structural Matrix vs. Autocorreleation matrix. The up-
per row shows the images on which the correlations were calcu-
lated. The middle row shows their respective autocorrelation matri-
ces while the third row shows their structural matrices.

2. BACKGROUND
2.1 Parametric Texture Synthesis

Texture analysis and synthesis is an intriguing problem which has
drawn wide attention in the past two decades [Wei et al. 2009].
Early works aimed to analyse textures with respect to human per-
ception, studying the features and their statistics. The prominent
work by Heeger and Bergen [1995] involved iteratively matching
histograms across image scales between the sampled texture and
the synthesized one. Portilla and Simoncelli [2000] improved the
synthesis performance using joint statistics by treating structures
in the texture exemplar. Starting with random noise, they alternate
between matching the sample statistics of steerable (tunable) filters
to those of the exemplar and reconstruct a texture from these fil-
ters by optimizing the statistics of the output to match those of the
exemplar.

To improve the reproduction of structured textures, De Bonet
[1997] generated and sampled from a joint distribution of the tex-
ture features across scales. In our work, we do not design filters, but
rather use the features pre-learned by a neural network, and present
a novel correlation target among these features to analyse the tex-
tures and their structures.

Galerne et al. [2011] targeted at synthesizing weakly structured
textures by enforcing the Fourier power spectrum of images using a
random phase approach. They synthesize new textures by random-
izing the Fourier phase of the source image.

2.2 Non-Parametric Texture Synthesis

Patch-based techniques bypassed the need to analyse the sam-
ple texture, and directly synthesize the texture and composed it
by combining patches taken from the sample texture. The earlier
works [Efros and Leung 1999; Wei and Levoy 2000; Efros and
Freeman 2001] used Markov Random Fields, where the probabil-
ities are taken from the exemplar texture. Later patch-based opti-
mization techniques, where all pixels are simultaneously synthe-
sized were developed [Wexler et al. 2004; Kwatra et al. 2005;
Lefebvre and Hoppe 2005; 2006; Risser et al. 2010; Darabi et al.
2012]. These patch-based optimization techniques became the
state-of-the-art in texture synthesis due to their simplicity and con-
sequently their speed. They limit randomness for preserving regu-
larity. In particular, Risser et al. do it via an analysis of the initial
structure in the exemplar while Lefebvre et al. allow the user to con-
trol it manually. Furthermore, these techniques have a larger scope
since the patches capture local structures well. However, as identi-
fied by Liu et al. [2004] they do not capture non-local structures.
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In their work, Liu et al. developed a method to track and explicitly
learn near-regular structures with a user-assisted lattice extraction.

2.3 Gram-based Texture Synthesis

Recently, Convolutionl Neural Networks (CNN) stormed in and en-
abled tasks which were previously extremely difficult. One of the
major break-throughs enabled by CNNS is their alleviation of the
need to intricately design filter banks or image features. The “deep”
image features are implicitly learned by means of huge neural net-
works trained to solve complex tasks.

Recently, Gatys et al [2015] presented a solution which employs
CNNs to synthesize textures. They defined an inter-feature loss,
which involves calculating the inner product between sets of feature
vectors and encoding them in Gram matrices. The deep features
were extracted from the texture exemplar using a pre-trained CNN
(VGG-19) [Simonyan and Zisserman 2014]. Their method synthe-
sizes a target texture by iteratively optimizing an initial noise image
using an objective which enforces the synthesized texture to have
a similar Gram matrix to the one of the exemplar texture. Follow-
ing Gatys et al., Li and Wand [2016] combined MRF priors with
CNN to significantly improve synthesis quality. For global struc-
ture consistency, they imposed explicit layout constraints through a
“content” image.

Since our method builds upon Gatys’ and uses their method as a
reference, we elaborate on this Gram-based method.

Let I denote the target texture and / the exemplar texture. Ex-
tracting the Gram matrix involves running an image / or I forward
through a neural network, which yields the deep features. We de-
note the n'* feature channel of the I’ layer by f/".

Using the Gram matrix, between n and the n’ feature channel
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where ¢ and m are the indices running across the Q x M feature
map. We denote the loss associated with the Gram matrices as Eé;rm
which is given by
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where G is the Gram matrix extracted from 1.
The total Gram loss, summing over the various selected layers
which take part in this loss is given by

Egrm =Y W EGym: 3)
1

where le are hyper parameter weights which allow setting the

various Grams’ relative influence.

The Gram-based optimization successfully synthesizes textures
with visually similar characteristics. However, the synthesized tex-
tures ignore the structural form. The method we present deals with
a larger scope of textures that may include structures.

Aittala et al. [2016] have successfully applied Fourier-domain
priors within texture synthesis. Liu et al. proposed to augment the
Gram-based loss by incorporating low frequency constraints to al-
low the synthesis of textures having large scale regularity. This is
achieved by adding spectral information, using the images’ Fourier
Transform, in a loss function. We believe that by controlling the
structure of deep features rather than the pixel values directly, we
can tolerate minor pixel differences between objects with similar
semantics. For example, the correlations of the series of statues as



in Figure 8 are more significant in feature space rather than in image
space (or a linear transformation of it, i.e., its Fourier Transform).

3. DEEP CORRELATIONS

Textures by definition contain repeated and similar patterns and of-
ten have structural form. To allow synthesis of a broad scope of
textures, we present, a novel energy term, denoted by Epc, whose
role is to direct the optimization process towards preserving regu-
larity. As we shall see, it can be used to synthesize textures with
or without the Gram loss. Our deep correlation energy term is mo-
tivated by the fact that the Gram matrix only makes use of inter-
feature correlations whereas image structures are represented by
the intra-feature correlations. Based on this insight, we define the
set of deep correlation matrices at different layers by:
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where i € [~Q/2,0/2] and j € [-M/2,M /2] or R'" € RO*M

This amounts to shifting fé:ﬁ, by i pixels vertically and j pix-
els horizontally and applying a point-wise multiplication across the
overlapping region, weighted by the inverse of the total amount of
overlapping regions. That is:
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Based on the above deep correlation matrix, we define the feature
structural loss for the I' layer by
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To run a backpropagation iteration using this loss, we derive it
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where ® denotes a convolution.
Similar to the Gram loss, we weigh the various layers’ DCor
losses, to yield the total DCor loss

Epcor = Y WP EDcor- ©)
1

‘We emphasize that the normalization of the correlations is key, as
it provides equal influence to each offset (see Figure 2) and there-
fore improves the SNR of the matrix. Empirically, we found that
the normalized deep correlations better preserve the fine or less no-
ticeable structures. In Section 6 we show that the deep correlations
without normalization aid in preserving structure compared to us-
ing the Gram loss alone. We also show that using the deep correla-
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tions (with normalization) improves the structure preservation even
further and grants it the ability to preserve finer structures.

We stress that our deep correlation is targeted at structured tex-
tures which are approximately stationary , and thus they are a func-
tion of offsets. This is demonstrated in Figure 3, where different
crops of a larger structural texture are shown. Their autocorrela-
tion matrices, which were calculated directly on the pixel values
(after converting them to gray scale in this illustration) convey sim-
ilar patterns. Minimizing the difference between the source and tar-
get textures can then generate various output textures with similar
structure.

Fig. 3: This figure illustrates that various examples with similar
structures but different pixel contents have very similar autocorre-
lation matrices.

3.1 Encouraging Diversity

Optimization has a tendency to reproduce the input texture when
the texture representation is over-complete. In the following we
present two methods that we developed to alleviate this tendency
and encourage diversity.

By standard definition, the correlation matrix of a given image
I has the same size as the input image. Thus, in case the exemplar
texture dimension is not equal to the one of the synthesized texture,
their corresponding correlation matrices are not of the same size

and the expression (R — R) is ill-defined.

When the exemplar image Iis exactly the size of the target im-
age I, calculating R involves shifting fé;',z by up to Q/2 and M/2 in
each direction and applying a point-wise multiplication across the
overlapping regions, weighted by the total overlapping area. How-
ever, with these overlapping weights (Equation 5) we can generate
a matrix R with larger shifts yielding a larger matrix. This extended
matrix R can be thought of as the deep correlation matrix of some
larger input example I. The weighted overlaps allow the output to
extend up to (20— 1) x (2M —1). We may exploit this insight in
order to synthesize an output larger than the input, effectively en-
forcing the output to be different than the input. Synthesis of a re-
sult which is larger than (2Q — 1) x (2M — 1) requires expanding
the correlation matrices. In the results presented in Section 6 we
make use of toroidal expansions, by applying a modulus operation
on the image coordinates.

Figure 4 shows two images (upper row) and their corresponding
deep correlation matrices (lower row): the left one was generated
from a large texture by shifting it by Q/2 and M /2 in each direction
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which yields a correlation matrix equal in its size to the input im-
age. The right correlation matrix was generated from a cropped ver-
sion of the same input, while shifting by more than Q/2 and M/2,
in order to achieve a larger correlation matrix. As can be seen, the
two matrices are quite similar, and have similar structural features
at the same relative locations.

Fig. 4: The extended deep correlation matrix generated from a
smaller exemplar can have similar structure as the one generated
from a larger exemplar.

The second mechanism for encouraging diversity is an addi-
tional loss function that penalizes for synthesizing deep features
which are similar to those of the exemplar:

1 2
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We weigh different layers’ diversity losses, to yield the final

diversity loss
Epiy = ZW?Ei)iv' ®
1

In Figure 5 we show the generation of different results using our
diversity control methods.

4. SMOOTHNESS PRIOR

To enhance the synthesized textures and make them more visu-
ally pleasing, we add another loss term. Commonly, [Johnson et al.

Fig. 5: A structural texture on the left and three different synthe-
sized results. These results were obtained by the diversity mecha-
nism that extends deep correlation matrices.
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2016] a smoothness loss is defined as a total variation term. We
found that such a term tends to over-smooth the texture since it is
oblivious to the edges. Instead, we propose an edge preserving loss.
Our smoothness term does not penalize in cases where at least one
adjacent pixel’s value is similar. Like a soft-min loss, we wish that
our loss penalizes only in cases where none of the neighbouring
pixels have a value which is similar to the pixel under considera-
tion. This should also alleviate the common checker artefacts which
CNNss tend to produce due to the unbalanced filters and strides. Our
smoothness term is given by,

1 2
! 1, I,
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where 01,0 are the neighbourhood indices.

This term preserves the sharpness along directions perpendicular
to edges. It functions by returning a value which is approximately
the minimal value out of the summed differences. Hence, it is suf-
ficient that at least one neighbour pixel is similar for the loss not to
penalize.

Similarly to the other losses, we weigh different layers’ smooth-
ness losses, to yield the final smoothness loss

Egmooth = Y W) Elpoorn- (11)
)

5. STRUCTURAL TEXTURE SYNTHESIS

Given a texture exemplar I, the synthesis of a texture [ is the re-
sult of an optimization process executed in a convolutional network
which involves forward and backward passes of I through the CNN.

First, a single forward pass on fgenerates 627,[,, ﬁf; and f;j"m which
are then used to calculate the total loss function E. Given the Gram
and deep correlation matrices of both / and /, the loss can be calcu-

lated and derived. The total loss we make use of is given by,

E = aEpcor + BEGrm + NEDiv + YESmooth- (12)

However, to demonstrate the descriptive power of the deep corre-
lations, we first show its performance in synthesizing textures with-
out the Gram term. That is:

E;= ﬁEDCor + nEDiv + YESmootIr (13)

Figure 9 displays sample textures and the synthesized textures
with and without the Gram term. The results of applying the DCor
term without the Gram term are surprisingly good. The Gram term
alone cannot handle the structures. Note, however, as shown in col-
umn (b), that the combination of the two terms yields better results.

To summarize, the optimization scheme is illustrated in Figure
6 (the details about the convolutional network shall be provided in
the following section). In each forward pass, wa,, Rﬁ:;', diversity
and smoothness terms are generated at prescribed layers {/}. After
each forward pass, updated features are computed for updating the
loss and its gradients, which are then fed to the backward pass and
back-propagated, up to the output layer, to correct and optimize /.
The forward pass on the left (in gray background) is applied only
once, to generate the target Gram and DCor matrices. The synthesis
algorithm is summarized in Algorithm 1

6. EXPERIMENTAL RESULTS

We tested our synthesis scheme on various textures most of which,
but not all, contain structures, and compared its performance to
those of Gatys et al. [2015], Portilla and Simoncelli [2000] and
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Fig. 6: Texture Synthesis Scheme. The block on the left with the
gray background is executed only once on the exemplar texture to
yield the reference matrices. The rectangle with the yellow back-
ground consists of the forward and backward iterations. Green ar-
rows are executed during backward iterations only.

Algorithm 1 Texture Synthesis scheme

1: Input: image I, weights w’, wP, w}
phn 7,
RS fom

A
/7 g0

2: Forward pass: Compute C:'ln §
3: while (not converged) do
. ! Ln rl,
4: Forward pass: Compute Gnvn,,RJ,fq_;’n
OE
2f5m
6: Backward pass: Back propagate and update I

5: Compute

the advanced patch-based optimization of Kaspar et al [2015]. We
used images from the CG-Textures dataset [2005] and the Brodatz
dataset [ Valkealahti and Oja 1998]. We implemented our algorithm
using MatConvnet [Vedaldi and Lenc 2014] as our CNN frame-
work. As part of the MatConvnet project, a pre-trained model for
VGG-19 is provided. VGG-19 is a 19-layer network, consisting of
only small 3-by-3 filters. The network consists of 16 convolution
layers and three fully connected layers. No retraining was applied
and the provided VGG-19 CNN was used as is, with no changes ex-
cept in the pooling layers. Following the recommendation in [Gatys
et al. 2015], we found the results to be more visually pleasing
when the pooling is an average pooling rather than a max pooling
one. Hence, all of the pooling layers in our CNN were switched
to average pooling ones. Since VGG-19 was trained on images
with 224x224 pixels, we rescaled our inputs accordingly. For the
Gram based style loss, we made use of the layers ’pooll’, ’pool2’,
"pool3’ and ’pool4’ with equal weights for each layer which sum
to one. The deep correlation and diversity losses are applied to

Layer Layer Lo§s Misc.
names weights weights
Fo o o 33 033] a0
Epcor pool2 1 B=0.5x10"*
Epiy pool2 1 n=—-1x10"*
ESpmooth convl 1 y=—0.75x10"3|c=1x10"3

Table I. : The parameters that were used in our experiments

the ’pool2’ layer only. The smoothness loss is computed at the
"conv]l’ layer only. The choices of the various loss weights were
a=05,=05x10"%n=-1x10"*and y= —0.75 x 1073,
Table I summarizes all of the algorithm’s hyper parameters. In our
smoothness term, we make use of 4-neighborhood pixels for calcu-
lating Esmooth-

For the optimization process, we tested with both our own plain
vanilla gradient descent energy minimization, as well as the BFGS
algorithm with bounded constraints [Byrd et al. 1995] and found
that the BFGS algorithm yields better results. The image [ is
initialized as white Gaussian noise with a standard deviation of
oy =1x1073.

The CNN forward/backward passes and BFGS solver are com-
putationally intensive. The algorithm takes about 15 minutes to
generate a 224 x 224 output image using unoptimized Matlab code
on an NVIDIA GeForce GTX 780. The memory consumption is
dominated by the need to load the neural network to memory. In
our implementation we use VGG-19 which required roughly 1GB
of RAM.

6.1 Effect of the various losses

In Figure 7 we show the effect of the smoothness term by synthesiz-
ing a texture with exactly the same settings but with various relative
strength to the smoothness term 7. The left most image is the input
and to its right is the result in which the smoothness is set to the
weakest strength. Note the checker artifacts which are frequently
present in CNN based image synthesis. As we increase the strength
to stronger values, the checkers which are shown in box (A) di-
minish. On the right most end, we apply the strongest smoothing.
The upper row of results demonstrates that edge boundaries are still
kept sharp. Moreover, since the smoothness term favours edges, we
can observe that new edges start to appear, see boxes (B) to (D).
In Figure 8 we compare between our deep correlation and the
unweighted correlation (i.e., does not use the overlapping weights
in Equation 5). The left most column presents the input images and
the second shows our results using the deep correlation. The third
column from the left shows our results using the unweighted cor-
relation. Note that both correlations preserve the general structure
of the input better than using only a Gram loss, which is shown
in the right most column. Note in the upper row images that the
vertical alignment of tiles is preserved significantly better than the
Gram loss alone. However, using the unweighted correlations fails
to preserve the horizontal tiles placements. The deep (normalized)
correlations help revealing these structures within the image which
leads to a better reproduction of the results. A similar effect can
be observed in the bottom row in which the deep correlations help
preserving the vertical borders between the two stacks of statues.
In Figure 9 we present examples of textures synthesized with-
out the Gram loss. Column (a) shows the input texture. In column
(b) we use the Gram loss only (without the deep correlations). In
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Fig. 7: A comparison of our results as a function of y. The images from left to right are the input images and the synthesized images with
y=—-0.75%x1073,y=—0.75x 107%, y= —0.75 x 1073 and y = —0.75 x 10~2. Box A shows the checker artifacts which the smoothness
loss has prevented. Boxes B to D show the edges which have appeared once the smoothness strength has been increased.

column (c) we set & = 0 and by such effectively remove the Gram
loss, leaving only the DCor loss. Column (d) presents results of our
deep correlation applied together with the Gram loss. In the upper
most row, one may note that the general structure is still preserved
in column (c), but some of the fine structures and colors are not as
plausable as the ones in column (d).

We deliberately synthesize textures with and without regular
structures (see the three images in the bottom of the figure). As we
can see in column (c), although there are no significant autocorre-
lations, the deep correlations contain significant information about
the texture. Nevertheless, these results show that the deep correla-
tion and the Gram loss are complementary and together provide a
holistic solution to both regular and stochastic texture synthesis.

6.2 Comparison with other algorithms

The results in Figures 10 and 11 depict the input images, the Self-
tuning algorithm by Kaspar et al [2015], Gatys et al [2015], Portilla
and Simoncelli [2000] and our results, respectively. The images in
these figures are all taken from the CG-Textures [2005] and the
Brodatz dataset [1998]. Running both Portilla and Simoncelli’s al-
gorithm and Kaspar et al. algorithm was done using their default
parameters, as provided online. For Gatys’ algorithm [2015], we
made use of the same parameters as they have prescribed in their
paper . Clearly the use of the DCor loss preserves the regular struc-
tures in these textures. For example, the order of tile placement,
in the left most image, is well preserved. Note that our algorithm
detects and synthesizes multiscale textures without any parameter
tuning. In Figures 10 and 11 we employed our two methods for
encouraging diversity, as described in Section 3.1

In Figure 12 we present a comparison between our method and
the method by Liu et al. [2016], which builds upon Gatys’ ap-
proach and attempts to improve it by imposing structural con-
straints. Boxes (A) to (G) in the figure, emphasize where the struc-
ture preservation is unsatisfactory.

In Figures 13 to 15 we present more of our algorithm’s results,
including some failure cases.
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Following Kaspar et al. [2015], we performed an analysis they
call texture sequences. This may be regarded as a “stress test” that
examines the synthesis quality of an algorithm. The idea is to re-
peatedly take the synthesized texture output as an input, and ob-
serve the gradual degradation of the texture quality through the it-
erations. The results of our tests are presented in Figures 16 and
17 side by side with those of Kaspar et al. [2015] and Portilla and
Simoncelli [2000]. As can be noted, our synthesis preserves well
the essence of the texture without introducing many errors. We at-
tribute this by virtue of the fact that small errors that are not sys-
tematic nor having a structure, have little affect over our correlation
loss. On the other hand, systematic errors, such as checker artifacts
and boundary blur, have some correlation that gradually adds up.

7. DISCUSSION AND CONCLUSIONS

In this work we presented texture synthesis based on deep corre-
lations among pre-trained CNN features. We showed that the deep
correlations capture the regularities in the texture without encoding
the content or the feature positions. The deep correlation targets
structural textures, where state-of-the-art methods typically strug-
gle. In particular, our approach excels in handling structures of
multiple scales, without any parameter tuning. Moreover, we have
shown that the quality of the synthesis is high in the sense that there
is only little degradation in the texture reproducibility as shown by
a series of stress tests.

Limitations. The results presented in the paper show that syn-
thesizing structured textures with CNN has its merits, and the ease
of possibly adding more loss terms has more potential to further im-
prove the scope and quality. However, in our research we found a
number of limitations to this approach. First, the synthesis is rather
slow as we discussed in the previous section. Second, the results
typically suffer from a quality degradation along the image bound-
aries. These problems are attributed to CNN convolutions which are
ill-defined in those regions (the convolution at the image boundary
usually uses either pixel padding or mirroring to fill the missing
pixels.) To alleviate this issue, we configured our algorithm to syn-



Fig. 8: A comparison of texture synthesis results with deep cor-
relations, unnormalized correlations and a Gram loss only. From
left to right we show the input images, the results achieved using
deep correlations, the results using unnormalized correlations and
the results using the Gram loss only.

thesize results which are 10% larger than the final output size and
then crop out the center of the result.

In our research we learned that the Gram loss harms the quality
of the results when synthesizing outputs larger than the exemplar.
When one scales an input image, different filters become activated
in the CNN by virtue of the fact that the filters are not scale in-
variant. Hence, different features become dominant and the Gram
matrix changes its structure. Thus, it is improper to use a Gram ma-
trix extracted from an image of a particular size and then impose
an output result, of different size, to have a similar Gram matrix.

Future research. We believe that for improving some of the lim-
itations mentioned above and further extend this work, we can at-
tempt to retrain networks for explicitly coping with near-regular
and multi-scale textures. Similarly, inhomogeneous textures may
also benefit from CNN retraining. For inhomogeneous textures
such as the broken tiles, in which the correlations present no struc-
ture, we believe retraining with the correlation matrix as an opti-
mization target may yield features which detect correlations even
for such inputs.
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Fig. 9: Results of synthesizing textures with different combinations of losses. (a) shows the input texture. The rest of the columns show the

results of (b) Gram loss only by setting § = 0. (c) without the Gram loss by setting & = 0. (d) The deep correlation loss together with the
Gram loss.
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Fig. 10: A comparison of texture synthesis results of various algorithms on the CG-Textures dataset. The rows from top to bottom depict the
input images, Kaspar et al’s, Gatys et al’s, Portilla and Simoncelli’s and our deep correlation synthesized results.

Fig. 11: A comparison of texture synthesis results of various algorithms on the Brodatz dataset. The rows from top to bottom depict the input
images, Kaspar et al’s, Gatys et al’s, Portilla and Simoncelli’s and our deep correlation synthesized results.
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Fig. 12: A comparison of our results to Liu et al. [2016]. The rows from top to bottom depict the input images, Liu et al. and our deep
correlation synthesized results.
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Fig. 13: A comparison of texture synthesis results of various algorithms. The rows from top to bottom depict the input images, Kaspar et al’s
results, Gatys et al’s results, Portilla and Simoncelli’s results and our deep correlation synthesized results
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Fig. 14: A comparison of texture synthesis results of various algorithms. The rows from top to bottom depict the input images, Kaspar et al’s
results, Gatys et al’s results, Portilla and Simoncelli’s results and our deep correlation synthesized results
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Fig. 15: Results of synthesizing large outputs, applied on images from both the CG-Textures and Brodatz datasets. We show examples of
both structured and stochastic textures.
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Fig. 16: Stress testing of our algorithm on regular textures: Each iteration uses the synthesized output of the previous iteration as its input

exemplar. The upper most row are the input images and beneath it are the results of iterations 1,2,3,7 and 10. Columns left to right are the
results of Portilla & Simoncelli, Kaspar et al. and ours, respectively.
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Fig. 17: Stress testing of our algorithm on stochastic textures: Each iteration uses the synthesized output of the previous iteration as its input
exemplar. The upper most row are the input images and beneath it are the results of iterations 1,2,3,7 and 10. Columns left to right are the
results of Portilla & Simoncelli, Kaspar et al. and ours, respectively.
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