TeL AVIV UNIVERSITY % DIN-ON NU'O1DIIN

The Iby and Aladar Fleischman Faculty of Engineering
The Zandman — Slaner School of Graduate Studies

On the Coverage and Reconstructability of 2D
Functions Sampled by Arbitrary Line
Projections with an Application to Rain Field
Mapping

A thesis submitted toward the degree of
Master of Science in Electrical and Electronic Engineering

by

Omry Sendik

July 2013



TeL AVIV UNIVERSITY DIN-ON NU'O1DIIN

The Iby and Aladar Fleischman Faculty of Engineering
The Zandman — Slaner School of Graduate Studies

On the Coverage and Reconstructability of 2D
Functions Sampled by Arbitrary Line
Projections with an Application to Rain Field
Mapping

A thesis submitted toward the degree of
Master of Science in Electrical and Electronic Engineering

by

Omry Sendik

This research was carried out in the Department of Electrical Engineering —
Systems, under the supervision of Prof. Hagit Messer-Yaron

July 2013

Page 2 of 101



Acknowledgments

First and foremost I would like to express my gratitude to Prof. Hagit Messer. I believe Hagit
found the singular point which constitutes an optimal balance between supervision and freedom.
Functioning both as a shepherd, knowing when to keep me out of dead-end directions and as a
support vector which only showed me the general direction and let me go my own way while

making the mistakes I most definitely needed to make.

I would like to thank my buddies from the TAU research group for a handful of fruitful
discussions and mind boggling suggestions. I endlessly thank Yoav Liberman, Dani
Cherkassky, Noam David, Oz Harel, Elad Heiman, Ori Ausliinder and Yonatan
Ostromesky. Thanks for patiently putting up with my infinite lectures on my research trials and

tribulations.

A special thank you goes to Artem Zinevich which drew me into my research question, an
interdisciplinary field which finely merges between environmental phenomena and applied

mathematics.

Finally, I would like to thank my second half, Tsefi, for her relentless ability to push me
towards pursuing my dreams and her patience to put up with the endless hours which I sat in
front of my computer with a trashcan filled with crumpled drafts.

Tsefi, thanks for tolerating what I put you through, for keeping my goals no matter what they

were and mostly for simply being yourself.

Page 3 of 101



Page 4 of 101



Abstract

Signals received by microwave systems are inherently path averages since they are the result
of an integrated sample of the signal along the microwave's path. A novel method, suggested by
Messer et al at 2006 followed by Leijnse et al at 2007, involving existing commercial wireless
networks (CWN) suggested the usage of the backhaul communication links for the sake of
environmental monitoring. Put simply, Messer et a/ suggested using existing cellular networks'
equipment for the sake of meteorological monitoring of rainfall.

In the CWN system as suggested by Messer et al the links' geometry is for any means
arbitrary. Location of communication links, as performed by network technicians, is an intricate
task. Execution of this task usually balances between the attempt to minimize the number of calls
which will be lost due to a lack of reception while maximizing the distance between links in an
attempt to minimize the number of links (and by such minimize network establishment costs).
Such an optimization target unsurprisingly generates a completely undefined geometry of a
spatial distribution of links.

In this thesis I treat two central problems which arise from the arbitrary tolopogy which
desribes the links' distribution. The first is the question of coverage. I answer the question
regarding under what circumstances is a rain cloud detectable. By applying our approach to the
coverage problem we are able to generate coverage maps which depict the exact coverage of rain
events in Israel, when employing the newly suggested rain fall monitoring system.

The second answer which I attempt to answer is the question of reconstructability. If one is to
reconstruct the rain map from the samples of added attenuation, it is first to examine whether the
geometry of links enables so. I address the issue of sampling a general two dimensional function,
an image perhaps, by collecting the values of its projections along lines. By projections I mean
the sum or integration of its values along a line. I do not impose any geometrical/topographical
constraints on the nature of the lines. The lines may differ one from another by its angle, length
and the distances between them may be uneven.

Our contribution is a procedure for determining whether a given links realization yields a
reconstructable function and if so, what is the maximal non-aliased spatial frequency which is
properly sampled.

I apply our solutions to the coverage and reconstructability on actual links of the Israeli

Cellular Service Provider Cellcom.
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Notations and Nomenclature

Mark Explanation Misc
f(t) Continuous time signal
f[ n] Discrete time signal
f ( t) Continuous time signal
after a integration
F (a)) Continuous Frequency
Fourier Transform of f(t)
F ( k) Continuous Frequency
Fourier Transform of f [n]
Fi. Continuous time Fourier 1 % . . < .
t Transform .’F{f(t)}:ﬂ.[f(t)e”dt:]: I{F(u)}:J.F(u)e’ du
T, Sample Time
U Sample Frequency u,=1/T,
Rect (t) Rectangular function L,te [_0.5, 0. 5]
Rect (1) =
0, else
Si Sinc function 0 _ V2
inc(u) .’F{Rect(t)} L .[ Rect(7)e"dt = L I e Mdt =
2r 27 3,
11 (& 1 sin(u/2) 1 .
= |e 2 g2 :——( ):—smc(u/2)
27w —ju 2 ul/2 2r
2D line functi
o (%) e function . —%cos@ﬁxﬁ%cos@
fWﬁ(x’y)_ y=xtand
0, else
CWN Commercial Wireless
Networks
LTI Linear Time Invariant
LSI Linear Space Invariant
CT Continuous Time
DT Discrete Time
FT Fourier Transform

Table 1 — Notations and Nomenclature
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1 Introduction

1.1 Problem Motivation & Background

Recently a new paradigm has pervaded the discipline of environmental monitoring. Using
microwave attenuation measurements for the reconstruction of rainfall fields, which was initially
suggested by Giuli et a/[15][16] The latter suggested a proprietary design of microwave links
with a specifically chosen geometry which was designed to ensure proper reconstruction of rain
fields.

Though Giuli's proposition dates back about 20 years it seamed not to gain rise. This is most
probably due to the price of deploying such a microwave based system. A project named
MANTISSA[17], or Microwave Attenuation as a New Tool for Improving Stormwater
Supervision Administration, set out to test the feasibility of using microwave signals to estimate
rainfall estimates.

These signals are inherently path averages since they are the result of an integrated sample of
the signal along the microwave's path. MANTISSA aspired to use these averaged rainfall
estimates as a complement to radar data and by such improve the available input data to
hydrological models for forecasting urban and rural drainage systems' response.

A novel method, suggested by Messer et al [21] at 2006 followed by Leijnse et al [18] at
2007, involving existing commercial wireless networks (CWN) suggested the usage of the
backhaul communication links for the sake of environmental monitoring. Put simply, Messer et
al suggested using existing cellular networks' equipment for the sake of meteorological
monitoring of rainfall. This suggestion alleviated the problem of the costs of the microwave
based systems by using the existing links, which changed their high deployment price to zero.
This constituted the first major step towards the new approach for Environmental Monitoring.

Evidently, the received signal strength at which each antenna receives its pair's transmitted
signal may be stored. Moreover, it is indeed often stored and kept for offline inspection. Messer
et al have proposed the usage of these cellular networks' built-in monitoring facilities. Being a
"widely distributed observation network, operating in real-time with minimum supervision and
without additional cost" [21] motivated the attempt to use this data from the CWN with the
theoretical justification for such attempts being a power law which related the signal attenuation

to the rain rate [23]. The power law relating the attenuation to the rain rate was shown to be an
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approximation which holds in convective rains and in communication systems operating in mid
range frequencies (above 1GHz and below the optical range). The exact relation between the

attenuation and rain rate is given by a series relation in the frequency and the rain rate —

A=aR’ {1 +> ¢, f”R”/’/"} (1.1)
n=2

where ¢, and ¢ are constants which are frequency, temperature and DSD (drop size
distribution) dependant. A is the logarithmic attenuation per km A[dB / km] and R[mm/ hr] is

the rain rate. Later, Olsen et al [23] also showed that using the approximation of —
A=aR’ (1.2)

is a good one and evaluated its usage with experimental results. The 4— R relation is often
considered as a completely linear one, approximating the power coefficient » to 1, when
operating at around 1cm wavelengths. And indeed, in the dedicated microwave links which were
suggested by Giuli ef al [15][16] the frequencies were chosen to ensure a linear 4 — R relation.
If we were to properly measure the rain induced attenuation we would apply a relation which
integrates the rain along the path which connects between two links, rather than assuming that
the rain is constant along such a line. This implicitly suggests that the rain along such a path isn't

necessarily constant. This is shown in the relation below —
A=a[R(x) dx (1.3)

In the system devised by Giuli ef al [15] the geometry of links was designed to attempt to yield
a proper reconstruction of rain maps inside an area of 400km®. In the CWN system as suggested
by Messer et al the links geometry was for any means arbitrary. Location of communication
links, as performed by network technicians, is an intricate task. Execution of this task usually
balances between the attempt to minimize the number of calls which will be lost due to a lack of
reception while maximizing the distance between links in attempt to minimize the number of

links (and by such minimize network establishment costs). Such an optimization target
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unsurprisingly generates a completely undefined geometry of a spatial distribution of links.

Figure 1 depicts the Giuli link system geometry compared with the link distribution in Israel.

[a) (h)
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Figure 1 — Wireless Cellular Links in Israel vs. the Giuli monitoring system [15]

1.2 Problem Statement

The measurements of the attenuation of the microwave signal are the result of the path-
integrated rainfall [3][4] along the wireless links. Each pair of antennas communicates one with
the other and experiences an added attenuation in case of rain fall. If one is to reconstruct the rain
map from the samples of added attenuation, it is first to examine whether the geometry of
antennas enables so.

I address the issue of sampling a two dimensional function, an image perhaps, by collecting
the values of its projections along lines. By projections I mean the sum or integration of its
values along the lines or links. I do not impose any geometrical constraints on the nature of the
lines. The lines may differ one from another by its angle, length and the distances between them
may be uneven. Our intent is to answer the question regarding the ability to reconstruct a

function from such a sampling scheme.
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We broaden the theoretical discussion by applying the suggested method on a practical
example, the problem of reconstructing rain-fall maps by commercial wireless communication
networks [18][21][22][31].

I also discuss a method for generating covrerage. These are maps which present the minimal

detectable rain rate given a predetermined set of links operating at a known frequency.

1.3 The Nature of the Links' Topology

The motivation to the problem of sampling a two dimensional function by integrations along
lines with arbitrary geometry is mainly due to the newly suggested method for environmental
monitoring [21][18].

In this section I present an insight into what typical sampling sets appear like.
For this purpose, I analysed roughly 8400 links of three Israeli cellular service providers, namely
Cellcom, Pelephone and Orange.

I plot the histograms of the links' lengths, angles and distance one from the other for Israel,
having divided it into four quarters, from North to South. I also analyse the histogram of the
entire set of links.

The centre of Figure 2 depicts the Israeli map of links. On the left hand side of the map, the
histograms of the link distances one from the other are depicted for each quarter of Israel (e.g.
the upper left most histogram is the histogram of distances of the upper quarter of Israel). On the
right hand side of the map, the histograms of the link angles and lengths are depicted for each
quarter of Israel.

The histograms emphasize the fact that urban, sub-urban and rural areas have different
sampling sets, not only in terms of the link densities but also in terms of the nature of lines (their
typical lengths and angles). One may notice that the maximal lengths, which may be found by
considering the maximal value in the histogram of link lengths on the entirety of the data,
appears only in the most rural part of Israel. These parts are the southern parts of Israel. The
histogram of angles shows that more urban areas display a more uniform distribution of angles
compared to areas which link's density isn't as high.

The definition of the distance between links is tough to state because the grid of links which I
have in hand is far from regular. Hence, the distance between links was chosen to be the shortest
distance between two links. The distance presented is in units of longitude and latitude. The

histograms below show that if we consider a small area and discard the values in the histogram
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with low probability, we may consider this as a relatively uniform distribution. However, if one

requires considering the low probability tail of the distribution, a fast decaying probability

density function must be used.
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Figure 2 — The Link Distribution in Israel; Angles, Lengths and Locations

1.4 Sampling Literature Survey

The reconstruction of a sampled signal, as proved by Whittaker, Kotelnikov and Nyquist and

which was discussed by Claude E. Shannon [27] has been well studied and is classically

considered to be one of the most cardinal results on the subject of sampling. The Nyquist

theorem states the terms under witch a perfect reconstruction of a band limited function can by
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reconstructed from its point samples. Moreover, the Nyquist theorem states exactly how to
reconstruct the sampled function by presenting the exact interpolation kernel, which is no other
than the sinc kernel.

Many variances of the sampling problem have been introduced since. Many of such variances
have been motivated by real-life applications. E.g., the problem of sampling in the presence of
Jitter is a common case. Any realistic sampling device cannot be of infinite sample rate
precision. Hence, the sample instance is usually presented as a delta function with probability
density function of deviating from its nominal location [5]. Jitter is known to be equivalent to a
phase noise in the frequency domain which is the reason it creates a spread of the spectrum
around the nominal one, which is the reasoning for suggesting a linear band pass filtering for the
spread mitigation.

An interesting perspective on the problem of Jitter is to consider it as a problem of irregular
sampling. In other words, different than the sampling manner which was discussed in the paper
by Shannon[27], we may consider the problem of sampling with an other-than constant grid.
Margolis and Eldar discussed the problem of Nonuniform Sampling of Periodic Bandlimited
Signals[20]. They treated the problem of reconstructing a periodic band limited signal from a
finite number of its non uniform samples. By extending the samples periodically, and assuming
that the underlying continuous time signal is band limited, they showed a simple way to deal
with a reconstruction from a finite amount of samples on an irregular grid. They also presented
two algorithms for reconstructing such a periodic band limited signal (for an even or odd amount
of samples). Feuer and Goodwin [13] addressed the problem of the reconstruction of a
multidimensional signal reconstruction sampled on an irregular grid. However, typical solutions
usually suggest a linear filtering approach for this problem (as stated above). Feuer and Goodwin
presented an interpolation identity which establishes the equivalence of two multidimensional
processing operations, one which uses continuous domain filters, whereas the other uses discrete
processing. An excellent survey discussing non uniform Sampling and Reconstruction in Shift-
Invariant Spaces is given by Aldroubi and Grochenig [1] in which they discuss modern
techniques and provide a unified framework for uniform and non uniform sampling and
reconstruction in shift-invariant spaces by bringing together wavelet theory , frame theory and
sampling.

Another well studied problem is the problem of sampling via a generalized function. In other

words, one may want to sample with other than the Dirac comb point process. A pragmatic
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motivator for this need is the fact that any real life device suffers from inertia and simply cannot
properly evaluate the point value of a function. Hence, many papers discuss the problem of
sampling via a local average, which is the manifestation of inertia. E.g., Sun [28] discusses the
Non-Uniform Average Sampling and Reconstruction of band limited functions which he terms
"signals with finite rate of innovation". Sun and Zhou [29] discussed the Reconstruction of
Band-Limited Signals from Local Averages and showed that the reconstruction of such band-
limited signals from local averages with symmetric averaging functions have an explicit error
bound. Considering the "point sampling" as a limit case of the average sampling they showed
aliasing error bounds for such average sampling. The problem of sampling with a general
functional may be expanded to many directions. However, the generalization of the problem to
any linear functional was beautifully treated by Papoulis [24]. Papoulis showed that a simple
evaluation of a determinant can be applied for the sake of determining whether the sampling
functionals are proper for the sake of sampling a band limited function. The Papoulis
Generalized Sampling Expansion (GSE) is used as a central tool in our work.

Yet another interesting aspect of the sampling problem is the ability to cope with missing
samples. The simplest case of treatment of missing samples was treated by many. An example of
such is given by Ferreira [12]. An extension to the problem of coping with missing samples in
the case of point values and point derivatives via the Papoulis Generalized Sampling Expansion
was proposed by Dorabella and Ferreira [10]. The conceptual approach to this problem is the
inspiration to our use of the missing samples problem for the case of the arbitrary line sampling
case.

An excellent survey discussing a multitude of sampling problems since the innovative paper
which was published by Shannon was written by Unser and is given in [30].

The papers above show the vast interest in sampling problems. However, to the best of our
knowledge, the problem of sampling via local averages along a one-dimensional line in the case
of a two-dimensional function (an image) where the lines are spread arbitrarily (and non
uniformly) hasn't been treated.

An innovative paper by Candes and Tao [6] discusses Near Optimal Signal Recovery From
Random Projections. At first this paper seamed like the exact application to our problem of
sampling via a local projection. Their paper showed that if the objects of interest are sparse in a
fixed basis, or compressible, then it is possible to reconstruct the sampled function to within a

very high accuracy from a small number of random measurements by solving a simple linear
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program. However, the central assumption in their problem is the presence of sparsity in a given
basis. We wouldn't want to assume so, due to the highly irreagular spectral nature of rain. In case
a sparse basis would be a probable assumption, then any signal made with a sparse frequency
representation may be recovered by convex programming from almost every set of frequencies
and the reconstruction is nearly optimal in the sense that the method will succeed with
probability which approaches unity.

Another paper which seamed highly related is a work by Leneman [19] which discusses the
correlation function and power spectrum of randomly shaped pulse trains. However, when
attempting to generalize this treatment to the case of the two dimensional function with varying
angles and lengths the complexity becomes clear. In our work I extend this result and show the
correlation function of randomly placed and rotated lines/rectangles placed on a two dimensional
space.

Due to the fact that many medical applications sample via projections along lines, many
treatments of such sampling scenarios may be found in the scientific literature. Beginning with
the prominent work by Radon [25] which showed the ability to properly reconstruct a sampled
two-dimensional function from Fourier Slices. In medical applications such as a CT imager, an
image is captured by the local cross sections of an object. The Radon transform represents the
scattering data captured by the tomographic device and the Inverse Radon transform may be used
for the purpose of reconstructing the volume density function. The crucial difference between
this tomographic application and ours is the fact that the cross sections are well organized in
space and by such ease the modelling and enable the relation to the Fourier Slices. As stated
previously, our sampling case employs projections (or Slices) along lines with arbitrary lengths,
angles or locations. A heuristic approach to the reconstruction of such a sampled image was
discussed by Marchi et al [9] where a kernel based Image reconstruction from scattered radon
data was presented. However, no thorough discussion regarding the precision at which the
reconstruction is achieved is discussed.

In this work I present a procedure which input is a set of lines of arbitrary lengths, angles and
locations and output is a binary answer regarding the ability to reconstruct a band limited
function from such a set of lines. This solution is formalized as a deterministic one as the line
coordinates are treated explicitly and no underlying probability density function describing the

lines characteristics are required.
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In an extension to this result I also show a derivation of the correlation function of a process
which describes sampling with randomly placed and rotated lines/rectangles placed on a two
dimensional space.

I apply the set of tools which I developed hereby on the problem of reconstructing rain maps

from a set of links which represent projections along arbitrary lines.

1.5 Mathematical Preliminaries

In the following section I mention some equations and theorems which I will often use along

this dissertation
1.5.1 The Dirac Comb and the Poisson Summation

The Dirac Comb and its Fourier transform is given by —

{Zat nT} Za‘( 2””) (1.4)

The Poisson Summation is given by —

o0

Y. 6(t—nT) =% i et (1.5)

n=—00

Another form of the Poisson Summation is given by —
2. S (n)=—- 2 F(2mn) (1.6)

1.5.2 The Whittaker-Shannon-Kotelnikov Theorem

The sampling theorem, more commonly referred to as the Nyquist sampling theorem is a

fundamental result in the field of information and sampling theory.

The Whittaker-Shannon theorem states that if a continuous time function f (t) contains no

frequencies higher than @, it may be completely determined by its samples spaced no less than
1/2u, apart.

We make a use of the Poisson summation formula and prove the Nyquist sampling theorem —
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f5(0)= (1) 2 8(1=nT) (1.7)

We apply a Fourier Transform to both sides of the equation —

n=0 n= n=

F(u—nu,) (1.8)

n=—0w0

N =

F (1)} = f{f(t) §(t—nT)} =%{F(u)* 5(u—nu, )} _

n=—0w0 n=-—0

We assume the signal is band limited with a maximal frequency of u,. Hence, we must

sample at a sample rate 2u,  <u_.

1.5.3 The Papoulis Generalized Sampling Expansion

Let us consider f(7) asa o band limited function if —

fel and F(u)=0 |u>c (1.9)

The Whittaker-Shannon sampling theorem states that —

10-3 f(nT)sinc(%(t—nT)) (1.10)

The Papoulis Generalized Sampling Expansion states when f (t) can be expressed in terms of

the samples g, (nT) of m linear functionals g, (z) of f(¢) each of which samples at a slower

rate —

T,=mT =2zm/c c=20/m (1.11)

We stress that linear functionals are in essence LTI systems H, (u) ke [1,. . ,m] .

These systems are all fed by the o band limited function f(¢)
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—f(t)— Hi(u) —g1(t)»

| HaW) [-ga(t)>
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——»{ Hu(®) J-ant>

Figure 3 — The Papoulis Generalized Sampling Expansion

1.5.3.1 Proof for 1D functions

We now attempt to show that f'(¢) can be expressed in terms of the samples g, (nT) of m

linear functionals g, (¢) of f(¢)each of which samples at a slower rate. We do so by following

the result given by [24]
T,=mT=2zm/oc c¢=20/m (1.12)

We stress that linear functionals are in essence LTI systems, hence the motivation to show so.

Let us assume we are given m linear systems with transfer functions —

Hk(u) ke[l,...,m] (1.13)

These systems are all fed by the o band limited function f(¢)

Each g, (¢)is given by —

g (1)= [ F(u)H, (u)e"du (1.14)

We shall attempt to express f(¢) in terms of the samples g, (nTg) of these functions. i.e. —

we wish to find y, (¢) such that —

00 0

F(0)= Xl & (m ) (e=nT, )+ 2, (17, ) v (=07, ) ]= 32 3 (o, )i (1=7,) - (1.15)

n=—ow n=-0 k=1
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We begin by forming the following set of equations —

H ()1, 1) - (1), (1) =1
Hl(u+c)Yl(u,t)+--- +Hm(u+C)Ym(u,t)=e~’“

H (u+2c)Y (u,t)+-- +H, (u+2c)Y, (u,t)=e"" (1.16)

H, (u+(m—l)c)Yl(u,t)+...+Hm (u +(m—1)c)Y (u,t):e/’(m—l)cr

m

where —

yi(t)== [ Ye(u.r)e" du (1.17)

The coefficients of the linear system of equations (1.16) H, (u +lc) are independent of ¢, and

the right side consists of periodic functions of 7 with a period of 7, (note that

lc(t + Tg) =lct +27l). Hence, the solutions Y, (u,7) must be periodic —

Yk(u,t)zYk(u,t+Tg) (1.18)

Using (1.17) and (1.18) we may write —

—o+c —o+c

t nT =— I ut nT /u(HT”’)afu=l J. Y(u t) Jut oI gy (1.19)
c

-0

We notice that (1.19) implies that y, (t—nf g) is the n” Fourier series coefficient of the

function Y, (u,t)e’ in the interval (—~o,—o +¢) . Hence —

0

Y (ut)e™ =y, (t—nTg)ej”Tg” ue(-o,-o+c) (1.20)

n=—0w0

By multiplying the first equation in (1.16) by e’ we have —

H, (u)eY, (u,t)+--+H, (u)eY, (u,t)=e" (1.21)
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Plugging (1.20) into (1.21) we yield —

0

H(u) Y] yl(t—nTg)ej"Tg" +-+H, (u) i v, (t—nTg)ej"T*’" =e (1.22)

n=—0 n=

which is true for everyu e (—O', o+ c).

jut

We now multiply the second equation in (1.16) by ¢’ and similarly yield -

H(u+c) Dy (t—nTg)ej"T“(m) +-+H, (u+c) i v, (t—nTg)e""T”’(m) =/t (1.23)

n=—oo n=—0w

Which is also true for every(u+c)e(-o,—o+c). However, due to the fact that

") = " \we may write (1.23) as —
H,(u) i w(t=nT,)e"™ + -+ H (u) i Yo (t=nT, )" =™ (1.24)

which is also true for every w € (—o +¢,0+2¢).
In the same manner we may prove that (1.22) holds for everyw (—0', O') .

Finally, we multiply (1.22) by F (u) and integrate according tou . In other words we calculate

the inverse Fourier transform -

j. F(u)(Hl(u) i » (t—nTg)ej"Tg” ot H (u) i v, (t—nTg)ej"Tg"] = ]. F(u)ej"t (1.25)

n=—0 n=-—0w o

By using (1.14) we may write -

f(t): i gl(nTg)yl (t_nTg)_'_”"i- i gm(nTg)yM(t_nTg) (1.26)

n=—0

which is what we wanted to prove.
We stress that the determinant of the linear system in (1.16) must be different than zero in

order for the sampled signal to be able to be reconstructed for the set of frequencies

u e(—0,0'+c).
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1.5.3.2 The 1D Papoulis Generalized Sampling Expansion — An Example
Let us examine an example of a sampling scheme which uses up to first order derivatives. This

implies that the sampling scheme may be illustrated as —

—f(Q) > HiW=1 |-gi(t)>
] Hau)=ju_|-go(t)>

Figure 4 — Sampling with up to first order derivatives

The sampling scheme defines —
H (u)=1 H,(u)=ju
a()=1(1) &)=/ (1) (1.27)

Tg:47z/0' c=o0

From the theorem above, we deduce that f (t) can be expressed in terms of the samples of

&2 (t)

The set of linear equations gives us —

Yl(u,t)+qu1 (u,t) =1

, 1.28
Y (1) + (u+ ), (1,1) =™ (1.28)
The determinant of the linear system is given by -
1 Ju | 0
1 j(u+0)_]0¢ (1.29)
The solution to this set of equations is given by —
() =1- (e <1) ¥, (wr) == (e 1) (1.30)

o jo

The Inverse Fourier Transform of these interpolation functions are given by -
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4sin’ (ot /2) vy (100) 4sin’ (ot /2)
e 4 (uyt)=—

ey = (1.31)

v (u,t) =

Which gives us the interpolation formula —

. 4sin2(a(t—47mj/2] A 4sin2(a(t—47mj/2] A
d f( ””]+ 9 f'( Z"] (1.32)

1.5.3.3 Proof for 2D signals
Let us define f(x,y) asa (O'X,Uy) band limited function if

f el and F(u,v) =0 |u| >0, or |v| 20, (1.33)

We denote the Fourier Transform of f'(x,y) by F(u,v).
We now attempt to show that f(x, y) can be expressed in terms of the samples
g (nTgx,pTgy) of m 2D linear functionals g, (x,y) of f(x,y)each of which samples at a

slower rate —

I, =mT=2zml/oc, ¢ =20 /m

1.34
I =mT =2zm/o, ¢, =20,/m ( )
Let us assume we are given m linear systems with transfer functions —
Hk(u,v) ke[l,...,m] (1.35)
These systems are all fed by the (ax, O'y) band limited function f(x, y)
Each g, (x,y)is given by —
(x,7)= j F (u,v)e’ e’ dudy (1.36)
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We shall attempt to express f (x, y) in terms of the samples g, (n];,", pT; ) of these functions.

i.e. — we wish to find y, (x,y) such that —

NgE
Ms

f(x,y): [g (nTg",pTgy)yl(x—nTgX,y—pTé")+...+gm(nTgx,pTgy)ym(x—nTgX,y—pTgy)]=
e
(1.37)

ki (nTgX,pTgy)yk (x_”Tgx7y—pTé")

n

1l
™M
™

We begin by forming the following set of equations —
H, (u,v)Yl(u,v,x,y)+---+Hm (u,v)Ym (u,v,x,y) =1
jeyx Jeyy

Hl(u+cx,v+c )Yl(u,v,x,y)+---+Hm(u+cx,v+c )Ym (u,v,x,y)ze‘ e

H(u+2c v+2€) (uvxy)+ +H, (u+2c v+2c) (uvxy) ol 2% ol 2y

(1.38)
H, (u+(m Ve ,v+(m- l)c ) (u v, X, y)+
H, (ut+(m=1)e v+(m=1)c )Y, (u,v,x,7) = o/ et I l)eny
Where —
1 —O'X +L‘X —O'J,‘FC}, . .
yi(xy)=—— Y, (u,v,x,) "™ dudv (1.39)
X"y -0, -0,

The coefficients of the linear system of equations (1.39) H, (u +lc v+ lcy) are independent
ofx, y, and the right side consists of periodic functions of x,y with a period of 7,/ and T .
Hence, the solutions Y, (u,v,x, y) must be periodic —

Yk(u,v,x,y)zYk(u,v,x+Tgx,y)=Yk(u,v,x,y+Tgy):Yk(u,v,x+T;,y+Tgy) (1.40)

Using (1.39) and (1.40) we may write —

—o.+c, ~0), +c,,

Vi (x nl,,y— pTy)—— J. I u v, x—nT;,y- pTy) ]u(x_nTg)ejv(y_pT;)dudv =
c.c

x7y -0, -0,

(1.41)

—o.+c, ~0y,+Cy,
T ipTy
I .[ Y, (u,v,x,p)e™e """ e " dudy

xy—o-
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We notice that (1.41) implies that y, (x —nT,,y- pTg) is the n”, p” Fourier series coefficient

of the function Y, (u, v, X, y) e’”e’ in the interval (—UX ,—0, +cC, ) X (—O'y , =0, +¢, ) . Hence —

(v y)e e = 3 3 v, (x-nT y—pI ) e
B k k (1.42)

(u,v)e(—o*x,—ax +cx)><(—0'y,—0'y +cy)

Jux

By multiplying the first equation in (1.39) by e’“e’” we have —

H (u,v)e™e™Y (u,v,x,y)++H, (u,v)e"e™Y, (u,v,x,y)=e"e” (1.43)

Plugging (1.42) into (1.43) we yield —

Hl (u’v) Z i 4 (x_nT;,y—pTgy)ejnT;uejpTgvv EEp

n=—w0 p=—0w

. (1.44)
+H, (uv) Y. D v, (x -nT;,y—pT] )ej"Té"e"pT’;V = e/
n=—w0 p=-0
which is true for every (u,v)e(-o,,—o, + cx)x(—o-y,—ay +cy) :
We now multiply the second equation in (1.38) by e’“e¢’” and similarly yield -
H(utec,vee,) D0 2 w(x=nTy,y-pT} )e"'"Tg(“”")e]pT*’v(”"”) +
e (1.45)

+H, (u +c,v+ cy) Z Z Vo (X— nT;,y - pTgy )ejnT;(“+c’)e'IPT;(WJ’) = ej(”“"‘)xej(m")y

n=—00 p=—w0

Which is also true for every (u,v)e(-o,,-0, +¢,)x (—ay,—ay +c, ) However, due to the fact

nTy (u+e,) eJPT;,?’(ch) _ T T

that e e we may write (1.45) as —

H, (u,v) i i y1(x_m;:ay—ptgy)ej"T;“e""’Téyv+---

n=—w p=—0

+H, (u,v) i Z v, (x— nT,,y—pT; )ej"T’;""ejpT’gV =e/e”

n=—w p=—0

(1.46)
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which is also true for every (u,v) e (-0, +¢,,—0, +2¢, ) (—ay +c,,—0, +2¢, ) :
In the same manner we may prove that (1.44) holds for every( u, v) € (—O'x, o, ) X (—O'y , O'y) .

Note that in order to tile the entire plane we must examine some extra equations, which do not

appear in (1.38), of the form —

Hl(u+cx,v) i i b2 (x—nTgx,y_pTgy)e/”T;(w DT | ..

n=—0 p=—wn

© (1.47)
(ute,v Z Z D B R i P
which, by the same reasoning is equal to —
H, (u,v) Z Z ¥, (x—nTgx,y—pEy) JnTu T3V
e (1.48)

FH (1) 3 S (5T, e pI? e T < gt
Nn=-00 p=—w0
which is true for every(u,v)e (-0, +¢,,—0, +2c,)x (—O'y,—O'y + cy) :
Finally, we multiply by F (u,v) and integrate according tou,v . In other words we calculate the
inverse Fourier transform -

Hl(”"’)i i yl(X—”l]?,y—pTgy) e et
F(u,v) e ps _

Z Z Y (x=nT},y=pT} )" " (1.49)

— 29

T
0.

2

o, Oy
= I J. F u, v e’“"e’”dudv
O' O'

By using (1.36) we may write -

f(x,y)= i g1(nTgx,pTgy)yl(x—nTg",y—p];J’)+...+

(1.50)

0

+ Z g, (nTg",pTgy)ym (x—nT;,y—pTgy)

n=—00

Q.E.D.
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2 Coverage

2.1 Coverage of detecting Rain

In this section we discuss the problem of detecting rain by an arbitrary set of lines. Attempting
to reconstruct rain maps using the data which was obtained from the Commercial Wireless
Networks (CWN) requires an understanding of the processing which each RSL value undergoes.
Such a processing clearly depends on the exact equipment which is used in the cellular network.
As any digitally stored data dictates, the RSL value undergoes quantization. RSL values are often
saved after being quantized to a resolution of 1dB but a quantization of 0.1dB may also be
commonly found. The effects of the atmosphere and weather on the performance of a mm-wave
communication link have been analysed by Frey[14]. It has been found that the attenuation due
to heavy rain at frequencies below 1 GHz is negligible. In fact, the rain induced attenuations are
in the order of the quantization and hence may probably not be measured properly. However, at
frequencies above 15GHz, the attenuation as a function of the rain rate is large enough to be
measured. Figure 5 shows the rain induced attenuation as a function of the mm wave frequency.
One may easily notice that at frequencies of around 20GHz, the attenuations go beyond the
quantization magnitude. This is what enables a proper measurement of various rain rates, using
the CWN. It must be stressed that this plot depicts the attenuations per km. Thus, longer links
will cause larger attenuations for a constant rain rate which further eases the RSL quantization
requirements.

Backhaul operating frequencies of cellular networks vary depending on the communication
technology. These are usually in the range of 20 GHz for longer range links and may reach up to
40 GHz for short links where two antennas are closer one to its pair. This in turn means that we
may indeed use the logged backhaul RSL samples in order to measure the rain rates. Figure 6
shows the link lengths as a function of their frequencies, in an Israeli cellular provider network.
This plot includes 3515 links and shows both directions of transmission, in blue and in red. The
plot shows that transmission and reception frequencies rise as the link distance decreases. The
plot also reveals the fact that common discrete frequencies are used within a specific cellular
provider's network. This eases the management of frequencies between the various providers

operating inside a certain country.
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Figure 5 —Atmosphere and weather effects on performance of mm-wave communication link
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Figure 6 —The backhaul link lengths as a function of transmission frequencies.

By using equation (1.2) we may calculate the expected attenuation which is induced by a
certain rain rate. Of course, this relation gives us the rain rate per unit distance (km). Hence, in
order to know if a certain link will detect the rain we must consider its actual length. Moreover,

we need to take into consideration the link's sensitivity. In other words, we must consider the
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minimal rain rate which will cause a sensible attenuation. The lowest added attenuation which is
sensible by a certain link is given by its quantization.

Now, for each link, assuming a specific cloud profile, we may calculate the minimal rain rate
which such a link may detect. The cloud profile enables us to infer on the section of the cloud
which intersects with the link, and by such, causes an added attenuation due to rain. This notion
is depicted in Figure 7 in which cases (a) to (d) show a link which intersects with a cloud in a

manner which will cause an added attenuation.

4 so0saas

Figure 7 —Cloud intersecting with various links

Hence, once we know a cloud's profile and a link's length we may calculate the exact
intersection length and use equation (1.2) and the link's quantization in order to calculate the

minimal rain rate which is detectable by such a cloud. Denoting by L. the section of the link

int

which intersects with the cloud and by Q the link's quantization, the minimal rain rate which is
detectable by such a link is given by —

B Q 1/b
Rmin_[aL‘ J (21)

int

Assuming a cloud's profile is given by a generalized ellipse which is rotated by an angle of &

and cantered at (x_,, ) -

(cos@(xc —x)+sind(y, —y)]2 +[sin0(xc —x)—cosé(y, —y))z y .
. s |
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and the coordinates of a link's edges are given by (x,,,),(x,,¥,) the equation which describes

the link is given by —
=y
y-y == 2(x_x1)
XX
y=mx+n 23)
o nn
XX
n=y, —mx,

The problem of determining the length of L, reduces to solving a quadratic equation —

2

cosd(x, —x)+sin¢9(yc —[y‘_yz(x—xl)+yln

X=X,
+...

(24

2.4)
sin@(x, —x)—cos H[yc —(yliyz(x—xlﬁ— 7 j]
B

Writing the equation above as a quadratic equation with coefficients 4, Band C we may yield -
Ax’ +Bx+C=0
A= f*cos’ @+2 3" cos@sin Om + B sin”> Om’> +
a’sin’® @+2a’ sin @ cos Om + o’ sin” Om’
B=-2p?cos’ Ox,+2f3* cos@sin O(n—y, —mx, )+ 5> sin’ O(2mn—2my, )+
—2a’sin® Ox, —2a* sin@cos O (n—y, —mx, )+ a’ cos® @ (2mn—2my,) (2:)
C = Bx2cos® 0+ 282 cosOsin Om (—x.n+x,y, )+ f2sin* O (n—y,) +

. . 2
a’x} sin® @—2a’ cos@sinOm(—x,n+x.y,)+a’ cos’ @(n—y, ) +

_a2ﬂ2
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If the equation above has two solutions this implies that the line intersects with cloud in a
manner which resembles either case (a) and (b) in Figure 7, if there is only one solution to the
equation then the line intersects with cloud in a manner which resembles case (f) in Figure 7 and
finally, if there is no solution to the equation then line intersects with cloud in a manner which
resembles case (e) in Figure 7. Solutions to the inequality enable us to reveal cases (c) and (d).
An understanding regarding which of these six cases we have in hand may be achieved by
evaluating the discriminant of the quadratic equation.

The choice of the rain attenuation power law coefficients ¢ and b should be set according to
the link's operative frequency. Most reconstruction, detection or estimation algorithms make use
of values suggested by Olsen, Rogers and Hodge [23] or Crane [7]. Table 2 shows common
power law coefficients which are used for converting RSL attenuations per km to rain rate, as

given by [7]. These coefficients are suitable for temperate maritime climate regions.

Frequency | Multiplier a | Exponent b
1 GHz 0.00015 0.95
4 GHz 0.0008 1.17
5 GHz 0.00138 1.24
6 GHz 0.0025 1.28
7.5 GHz 0.00482 1.25
10 GHz 0.0125 1.18
12.5 GHz | 0.0228 1.145
15 GHz 0.0357 1.12
17.5 GHz | 0.0524 1.105
20 GHz 0.0699 1.1
25 GHz 0.113 1.09
30 GHz 0.170 1.075
35 GHz 0.242 1.04
40 GHz 0.325 0.99
50 GHz 0.485 0.9

Table 2 — Power Law Coefficients

In many hydrological applications, the actual interesting figure is the exact areas where a
predetermined rain rate may or may not be detected. We may think of this as the inverse problem
to the one discussed above.

Generating such maps requires evaluating exactly where the previous detection map which

states the minimal detectable rain rate is indeed above the desired detectable rain rate.
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3 Reconstruction

3.1 Reconstruction of a Sampled Function

3.1.1 Solution Overview

I address the problem of the ability to reliably reconstruct a two dimensional function (an
image) being sampled by sums or projections along lines. I do not restrict in any manner the line
types. Figure 8 depicts an example of such a sampling scheme. On the left hand side of this
figure we see the underlying sampled image and its samples, in the case of the "classical" point
sampling scheme; a regular grid of delta functions. Reconstruction from such a sampling scheme
requires the usage of these point evaluations of the underlying function. On the right hand side of
this figure we see the same underlying sampled image and its sampling scheme which is
represented by the lines. One may easily notice that the lengths and angles of the lines are
arbitrary, as the distances between the lines are.

Our solution to the question regarding the ability to reconstruct a two dimensional function
which is sampled by the suggested sampling scheme involves employing a series of three
separate operations which will be described in the following sections. These three stages consist
of firstly solving a problem of sampling with a regular grid (equally spaced locations with lines)
but with arbitrary types of lines. In the second and third stages we display the problem of a non-
regular grid as one with missing samples. Essentially these three stages enable displaying this
sampling scheme as a case of uniform sampling with missing samples [1][10][11][12]. Each
sample is one which has been sampled by a linear functional. This functional is the mathematical
representation of the line along which the projection has occurred. By considering these lines as
linear functionals we enable the usage of the Generalized Sampling Expansion which was

devised by Papoulis [24].
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/Regularlzatlon\

Arbitrary Line Integrated Sampling Arbitrary Line Integrated Sampling
Scheme - Non Regular Grid Scheme - Regular Grid

N

Figure 8 — The "Classical" Sampling vs. the Arbitrary Line Projections Sampling

3.1.2 Sampling with a single line type

I now show why sampling with a single type of line cannot be used in order to properly
reconstruct a signal. In essence, the problem of aliasing may be alleviated by sampling fast
enough. However, a discrete set of frequencies cannot be properly reconstructed when sampling
with integration along a single type of line.

Sampling a 1D function with a line of length # may be thought of as a convolution with a
Poisson comb after integrating —

A=Y “V Y (t')df']f?(t—nT) (3.1)

n==0\_t-n/2

We make use of the Fourier integration property —
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{jf } P | 2 (0)s(u)

iu

We add a phase property to it and yield —
t+a ' o t - d F(U)
J—'{_[Of(t)dt}—}‘{_!;f(t a)dt}—e (—m +7rF(0)5(u)j

We may now apply a Fourier transform on equation (3.1)

ST st mf- S T r)a ot

n==0\ t-nW/2 t—nW/2

Making use of the Poisson comb properties we yield —

5[ T rastem - T 1) £ ot

N==0\t-nW/2 t-nW/2 n=-x

Making use of the integration property we yield —

J—'(Mjmf() ] Zau nu, ) =F (u) [

t—nw/2 n=-x

jZéu nu,)

iFu nu)sinc (u—nu,)
=0

n

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Finally, we see that first and foremost, in order to reconstruct F (u)we must divide the

outcome by the sinc(.) which values may be zero.

Moreover, a sampling frequency in which no aliasing occurs doesn't exist due to the infinite

support of the sinc(.) unless f(¢) is band-limited.

3.1.3 Usage of the Papoulis Generalized Sampling Expansion for our solution

After having described the basic notion of the GSE, I now attempt to represent the Arbitrary

Line Projections sampling scheme as a case of sampling with linear functionals.

functionals will represent our line projections.
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Let us assume we are given a rather simple case of geometry of lines. A case where a two
dimensional function was sampled by numerous arbitrary types of lines (two types in this

example/figure). These lines may be of arbitrary angles and lengths. However, these lines are

located on a regular grid. Such a simple case is depicted in Figure 9.

First Line
Type

Second
Line Type

Figure 9 — Sampling scheme with projections on arbitrary lines with a regular grid

In such a case, we may employ the GSE by using two types of sampling functionals. One
which will represent our first line type and the second to represent the second line type.

In general, a linear functional which represents a line projection is given by —

1 —0.5W cos@ < x <0.5W cos @
Fwo(xy)=1" y=xtan@
0, else

(3.7)
sin((ucos@+vsin@)W /2
FW!g (u,V)z (( ) )

(ucos@+vsin@)W /2

In a case with only two lines the GSE set of linear equations is given by —
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H, (u,v) H, (u,v) 1

H, (u +cx,v+cy) H, (u+cx,v+cy) e’ |
sin ((cos Gu +sin ,v) W, / 2) sin ((cos O, +sin O,v) W, / 2) .
(cosGu+sinGv)W, /2 (cos Byu +sin 6,v) W, / 2 (3-8)
sin((cosé’1 (u+c,)+sing, (v+cy))W1 /2) sin((cos&2 (u+c,)+sinb, (v+cy))W2 /2) o
(cosH1 (u+c,)+sin6, (v+cy))W1 /2 (cosé’2 (u+c,)+sinb, (v+cy))W2 /2

Validating that they indeed form a valid set of sampling functionals requires evaluating the

following determinant

sin ((cos Qu +sin 6v) W, / 2) sin ((cos G,u +sin ,v) W, / 2)
(cos Qu +sinGv)W, /2 (cos Gu +sin 6,y )W, /2
sin((cos@1 (u +c)_)+sin01(ercy))W1 /2) sin((cos@z(u+cx)+sin02(v+c},))W2/2) (3.9)
(cosH1 (u+c,)+sin6, (v+cy))W1 /2 (cosé’2 (u+c,)+sin6, (v+cy))W2 /2

for the set of frequencies given by (—ax,O)x(—ay,O). o, and o, are given by the distances

between the lines-

o =r— O,=7— (3.10)

3.1.4 Usage of the Papoulis Generalized Sampling Expansion for our solution — An
Example

We now apply the formalism above for two lines with two angles of 7 /4 and 37 /4 and an

equal length, as shown in Figure 10.
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BE 35E IE

Figure 10 —~GSE usage for two Lines with equal lengths and angles 7 /4 and 37 /4

As suggested by equation (3.9) the system of equations for the Generalized Sampling

Expansion for two angles of 7 /4 and 37 /4 are given by -

sin((\/zu+\/§v)W/2) sin((—\/zu+\/5v)W/2)
(x/zu+\/§v)W/2 (—x/zu+\/§v)W/2

sin((x/z(u+cx)+x/§(v+cy))W/2) sin((—x/z(u+cx)+\/§(v+cy))W/2)
(\/E(u+cx)+x/§(v+cy))W/2 (—\/E(u+cx)+\/§(v+cy))W/2

Numerically evaluating its determinant yields -
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Determinant - Two Lines with Angles 45 and 138

Vertical Spatial Frequency

o4 3 2 ] 1 2 3 4
Horizontal Spatial Frequency

Figure 11 —GSE usage for two lines with equal lengths — determinant evaluation

Finally, now we know that these two lines can not form a proper sampling set and will yield
non-reconstructable signals due to the frequencies for which the determinant evaluates to zero.

We stress that the plot depicts the determinant evaluation for the set of frequencies
(-0,.0,)x (—O'y .0, ) but the evaluation is required only for (—o,,0)x (—O'y , O) ;

In section 3.2.2 which deals with the problem of synthesis (or how to choose a proper set of
lines) we show why to different lenghted lines with an angle of 90 degrees between them may

never be used for the purpose of sampling/reconstructing.

3.1.5 Coping with an irregular grid

I now attempt to relax the assumption we made in the previous section in which the lines are
located on a regular grid. For this purpose we need a method of regularizing a non-regular grid
on which the lines are located on. Figure 12 depicts this notion in which the newly added lines
appear in yellow on the right hand side. These are samples which we do not have (missing

samples) but which if appeared, we would have had a regular grid.
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Arbitrary Line Integrated Sampling Arbitrary Line Integrated Sampling
Scheme - Non Regular Grid Scheme - Regular Grid

3TN

Figure 12 — The Regularization of the sampling Grid

We begin the regularization process with the identification of our linear sampling functionals.
For this we are required to identify the number of different types of lines, where each type is
characterized by its angle 6, and its length 17, .

Hence, the identification process requires examining each pair of lines and checking whether

6, =06, and W, =W, (fori = j). One may choose to ease the requirement of equivalence between

two lines and define that two lines be treated as the same sampling functional if —

6,-6|<A, and |W,-w|<a, (3.12)

To summarize, the pseudo code of the process of identifying the sampling functionals is shown

below
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NumberOfFunctionals=TotalNumberOfLines
For i=1 to TotalNumberOfLines-1
For j=1+1 to TotalNumberOfLines
If( 6i- 0;]<Ap & [Wi- WjI<Aw )

NumberOfFunctionals = NumberOfFunctionals-1

Table 3 — Distinct Functional Identification Process

In the example of Figure 12 we show that after the regularization process, each of the three
sampling functionals is placed in every location on the regular grid. Hence, once we know the
number of sampling functionals we would like to locate each of these sampling functionals on
the regularized grid sites. For the purpose of doing so we must determine the proper sampling
grid on which to locate the sampling functionals. However, this problem doesn't necessarily have
a unique solution. We chose to add a constraint which compels choosing the grid with the
minimal amount of newly located lines on the grid (marked as yellow lines in Figure 12).

This suggests that we must find the maximal horizontal/vertical step sizes A ,A  between two

nearby lines, which ensure that each existing line (marked as black lines in Figure 12) will fall on
a valid grid site. The process of determining the grid step sizes begins with calculating the

distances between the centres of nearby existing lines —

5}“.‘éxi—xl.+l 5=y~ (3.13)

J

Having calculated the sets {5 /"} ,{5 7 } we must find their common divisor. Choosing our grid

step sizes as one of their common divisors compels that existing lines fall on valid grid sites.

Choosing the greatest common divisor is the choice which maximizes the values of A A and by

such minimizes the amount of newly located lines. To summarize, we choose the values of

A,.A, as the Greatest common Divisor (GCD) of the sets {57}.{57} -

A, =GeD({57}) A, =6cp({s7}) (3.14)
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We may choose to quantize the values of {6;‘} ,{5}’} to certain accuracy in order to relax the

requirement of finding the maximal horizontal/vertical step sizes ALA,, aswe did withA, A, . If

we do not insert any such relaxations the regularization algorithm may yield a very dense grid.

We denote the quantization value for A ,A by Q,,0, respectively. Inserting the relaxation on
the values of {5f } {5;} yields —

o)

0.

19}

0,

AX:QX-GCD{ ‘Ay:Qy-GCD{ ‘ (3.15)

where |_J denotes the floor function.

E.g. for a quantization value of 1x107> we will yield the step sized up to a resolution of three
figures after the decimal point.

We then draw a grid of points with spacings of A and A, between one another, beginning
with the most upper left existing line location. For each point on the grid we locate the linear
sampling functionals.

We note that the GCD () of multiple values may be calculated by recursively calculating it on

all of the entries -

Ax = GCD(8x,,GCD(8x,,GCD(8x;...))) (3.16)

3.1.6 Coping with an irregular grid — An Example

Enabling a control over the precision of the regular grid which we attempt to fit, we would
now like to understand which values yield better regularizations. When we state "better" we
mean that the original existing lines are as close as possible to the ones of the regularization

algorithm's output and we have a minimal amount of newly added lines.

The simulation depicted in Table 4 shows how varying the values of Q,,0, changes the
regularization results. In this simulation we used three different values of O, and setQ, =0, .

One may easily notice that smaller quantization values usually yields denser grids. However this

isn't necessarily true for every grid regularization problem. This is due to the fact that the GCD
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function isn't monotonous. This implies that choosing the optimal quantization values requires
some trial and error.

However, it is always true that larger quantization values will reduce the accuracy and we
notice that in the simulations with the higher quantization values, the initial red lines were fit to a

yellow line which grows distantly apart from: it.

O, and O, | W, 17 Output Grid

3.8x107 10x107 l/x

2.9x107 10x107 /7

0.87x107 10x107° 1/ 7z
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Table 4 — Evaluation of the Regularization Algorithm

3.1.7 Missing Samples

3.1.7.1 Missing Samples in the classical sampling scheme
In order to better clarify how we cope with the newly added lines which we are missing we

first solve the inverse problem for the classical sampling scheme [10][11][12] with a train of

delta functions.

Let us consider f(7) asa o band limited function if —

fel and F(u)=0 [u>c (3.17)
which is sampled at a rate of 1/ T such that o < % By the Shannon reconstruction formula we

know that we may relate f () to its samples by —

f(t)=20'Ti f(kT)sinc| 20 (t—kT)] (3.18)

k=—x

n

Let us denote the by S = {il,iz,i3,...,i } a finite set of integers which correspond to the
locations of the unknown/missing samples of (7).

Setting 1=i,T je{l,2,..,n} we may write —
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f(i7)= 20'Tk§:w f(kT)sinc[za(lj,T —kT)] =

., (3.19)
=20TY. f (kT )sinc| 20 (i, kT ) |+ 20T  (kT)sinc| 20 (i,T ~;,T) |
keS k=1
We may write this set of #n equations as —
f=h+Af (3.20)
where f is the column vector of unknown samples
£(j)=/(iT) je{l.2,..n) (321)
his the column vector composed of the known samples
h(j) = 20'T2f(kT)sinc[2a(ijT—kT)} JjE€ {1, 2,...,n} (3.22)
keS
and A is a matrix with the following entries —
A(j,k) = 20'Tsinc[20'T(ij -1 )] J.ke {1, 2,...,n} (3.23)
Finally, the vector of unknown samples f may be found by solving the inverse problem —
f=(1-A) 'h (3.24)
This also implies that the vector of unknown samples f may be calculated if the following
determinant is non zero.
[I-A]%0 (3.25)

Our desire is to apply a similar formalism for our purpose, the problem of missing projective

samples which are one of the added samples from the regularization phase.

3.1.7.2 Missing Samples in the Arbitrary Line Projections sampling scheme
After applying the regularization process described in section 3.1.5, we are left with a fully

regular grid where each grid site consists of our linear sampling functionals. However, our
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original sampling scheme didn't consist of the newly located lines (the yellow ones in Table 4). I
now formalize the problem as a problem of missing samples.
Following a similar formalism as described in section 3.1.7.1, we address the case of missing

samples for the case of the Arbitrary Line Projections sampling scheme.

Let us define f(x,y) asa (O'X,Uy) band limited function if

feland F(u,v)=0 |u|>0, or|v|20, (3.26)
which is sampled at a rate of 1/7, 1/T, such that o, < % o, < 2L Without loss of
X y
generality, we may relate f (x, y) to its samples by equation (1.50) —

0 0

Fn)= Y Y& (plaly )y (x=pT oy =T} )+t 8, (PT 4T, ) v, (x = pTY v =T ) | =
p=—o0 g=—0

(3.27)

0

>y igk(pTgx,qT;’)yk (x=pT.y—qT))
p=—0g=—0 k=1

We recall that this reconstruction equation indicates that f (x, y) was sampled by m linear

functionals.

Let us denote the missing samples indices by the set —

S={(p.q.k=1),.(p.q.k=1),....(p.q.k=7),...(p.q.k =m),} (3.28)

Examining the equation above, we divide it to a sum of samples we have and missing ones —

flxy)= Y gk(pTx,qu)yk(x—pTx,y—qu)+{ Z} & (pT.qT,)y, (x- pT,.y—qT,) (3.29)
pagkles

{p,q,k}ES

The values g, (pT,,q7,) in which {p.qk|es are samples which we had before the

regularization of the grid. We would like to make sure that a reconstruction is possible without

the missing samples g, (pTX,qu) {p,q,k} es.
We notice that if we integrate the left hand side of (3.29) along the line with the angle 6, and

the length W, which is located at (x,y) = (p];,qu) we yield our missing sample which is

exactly g, (pT,.qT, ).
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Applying this integration on the right hand side requires calculating the solution to the GSE

linear system which is given in (1.39), which yields the functions y, (x,y). We may use (1.39) in

order to complete the integration of the right hand side —

o420 5 2%
Yilx=pT.,y—qT |dt= mm Y, (u,v,x,v)e"" " dudvdt (3.30)
o R J 4 L e

Integrating along the line with the angle 6, and length , which is located at

(x,y)=(pTx,qu) is denoted by J' v, (-

iepa k)

Let us denote the results of the integration by —

| nleyyeta,, (3.31)

tve(pv,q',k')

where the indices ( p',q',k') are the appropriate indices given to the missing sample in S. e.g. —
if we were to integrate the fourth functional along a line which corresponds to the missing
sample (1,2,3),, we would yield A3412 )

After integration along the & sampling functional we yield equations of the form -

g (pT.aly)= X gk(pTxaqu)Ak*kpﬁ{ > &(pladl,)4,, (3.32)
p.q

{p.q.k}eS Jkjes

where the sum over {p,q ,k} £ S may be fully evaluated since g, ( pT..qT, ) in which

{ p,q,k} ¢ S are samples which we had before the regularization of the grid. Hence, we may write

(3.32) as —

8y (pTx,qT))=hk, + Z 8k (pTX’qu)Ak'kpq (3.33)

{p.q.k}eS

This is a set of linear equations which solution yields the missing samples

g, ( pT, qu) { p,q,k‘} € S . Writing this in matrix form gives us —
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g =h +Z§kA1k
%

: (3.34)
gk' = hk' +;g/€Ak’k
Where the elements of the matrix A K are Ak' hog -
Defining the vectors —
— — — \T
gz(gl,...,gk) (3.35)
and
- - - \T
h=(h1,...,hk) (3.36)
enable displaying the set of equations in (3.34) as the augmented matrix —
Mg = A (3.37)
Where M is called the augmented matrix and is given by —
I-A, | -A, “Ap o TAy,
_A21 I- Azz _A2m
M=| -Ay I-Ay, | .| -A,, (3.38)
_Aml _AmZ _Am3 I - Amm

If the augmented matrices' determinant is non-zero we may restore the missing samples by

using the ones we have. This is by virtue of the fact that the function has been over-sampled.

3.1.8 Missing Samples - An Example

I now apply the missing samples formalism which we devised in the previous section on the

following regularized grid -
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Figure 13 — Missing Samples Example

In this example we have two types of sampling functionals from which we have two samples

of the first one and only one sample of the second one.
Due to the fact that we have two sampling functionals, we may write the reconstruction

formula as (note: on the following section we denoted f;(.) 2 g,(.), /2 (.) 2 &, (.))-

S (5:)= 2 A (mam) 3 (x=m,y=n)+ £, (m.m) v, (x=m, y=n) (3.39)

And in explicit form —

f(xy)z 1(1,1)y1(x Ly- )+f2(1,1)y2(x—1,y—1)+
1,2)y1(x Ly- 2)+f2(1,2)y2(x—1,y—2)+

x=2,y— )+f2(2,1)y2(x—2,y—1)+
,2)y1(x—2,y—2)+f2(2,2)y2(x—2,y—2)+
D)y (x=3,y-1)+ £,(3.1) y,(x=3,y-1)+
yl(x—3,y—2)+f2(3,2)y2(x—3,y—2)+
yl(x—4,y—1)+f2(4,1)y2(x—4,y—1)+
h ,2)y1(x—4,y—2)+f2(4,2)y2(x—4,y—2)

NSRS
—_
P
=
—_

(3.40)

4,
4

We now explicitly write the values of the function at each sample location —
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x=1] f(L)=£(L)y(1-L1=1)+ £, (L1) y, (1-1,1-1)+ =1 | f(L)=/£(L1)y (1-L1-1)+ £,(L1) y,(1-1,1-1)+
=1 £(L2)y (1-L1-2)+ £, (L,2) y, (1-1,1-2) + =2 £(L2)y (1-11-2)+ £, (L,2) y, (1-1,1-2) +
f(2.)y (1-2,1-1)+ £, (2,1) y, (1-2,1-1) + f(2)y (1-2,1-1)+ £, (2,1) p, (1-2,1-1) +
£(2.2)y,(1-2,1-2)+ £,(2,2) y, (1-2,1-2) + £(2.2)y,(1-2,1-2)+ £,(2,2) y,(1-2,1-2) +
£33y (1-3,1-1)+ £,(3,1) », (1-3,1-1) + £y (1-31-1)+ £,(3,1) », (1-3,1-1) +
£(3.2)y,(1-3,1-2)+ £,(3,2) », (1-3,1-2) + £(3.2)y,(1-3,1-2)+ £,(3,2) », (1-3,1-2) +
f(4)y (1-41-1)+ £, (41) y, (1-4,1-1)+ f(4)y (1-41-1)+ £, (41) y, (1-4,1-1)+
£(4.2)y, (1-41-2)+ £,(4,2) y,(1-4,1-2) £(42)y, (1-41-2)+ £,(4,2) y,(1-4,1-2)
x=2| f(L)=f£(L1)y (1-L1=1)+ £, (L1) y, (1-1,1-1)+ =2 (L) =£(L1)y,(1-L1-1)+ £ (L1) y,(1-1L1-1)+
y=1 £(L2)y (1-11-2)+ £, (1,2) y, (1-1,1-2) + =2 £(L2)y (1-11-2)+ £, (1,2) y, (1-1,1-2) +
f(2)y,(1-21=-1)+ £,(2.1) », (1-2,1-1)+ f(21)y,(1-21-1)+ £,(2.1) », (1-2,1-1)+
£(2,2)y, (1-2,1-2)+ £,(2,2) y, (1-2,1-2) + £(2,2)y,(1-2,1-2)+ £,(2,2) y, (1-2,1-2) +
£33 1)y, (1-3,1-1)+ £, (3,1) y, (1-3,1-1) + £33y, (1-3,1-1)+ £, (3,1) y, (1-3,1-1) +
£(3.2)y,(1-3,1-2)+ £,(3,2) », (1-3,1-2) + £(3.2)y,(1-3,1-2)+ £,(3,2) », (1-3,1-2) +
f(41)y, (1-41-1)+ £,(4,1) y, (1-4,1-1)+ f(41)y,(1-41-1)+ £,(4,1) y, (1-4,1-1)+
£(4.2)y, (1-4,1-2)+ £,(4,2) y,(1-4,1-2) £(4.2)y, (1-4,1-2)+ £,(4,2) y, (1-4,1-2)
x=3| f(31)=/(1L1)y(3-L1-1)+ £ (L1)y,(3-L1-1)+ =31 fD)=£(L1)y (3-L1-1)+ £, (L1)y,(3-L1-1)+
= £(L2)y,(3-1L1-2)+ £, (L,2)y,(3-1,1-2)+ =2 £(L2)y,(3-1L1-2)+ £, (L,2)y,(3-1,1-2)+
£(20)y,(3-21-1)+ £, (2,1)y,(3-2,1-1)+ £(20)y,(3-21-1)+ £, (2,1)y,(3-2,1-1)+
£(2,2)y,(3-2,1-2)+ £,(2.2)y,(3-2,1-2) + £(2,2)y,(3-2,1-2)+ £,(2.2)y,(3-2,1-2) +
£(3.1)y,(3-31-1)+£(3,1)»,(3-3,1-1)+ £(3.1)y,(3-31-1)+£(3,1)»,(3-3,1-1)+
£(3.2)5,(3-3,1-2)+ £,(3,2) »,(3-3,1-2) + £(3.2)y,(3-3,1-2)+ £,(3,2) », (3-3,1-2) +
£(41)y,(3-41-1)+ £,(4.1)»,(3-4,1-1)+ £(41)y,(3-41-1)+ £,(4.1)»,(3-4,1-1)+
£(4,2)y,(3-41-2)+ £,(4,2)y,(3-4,1-2) £(4,2)y,(3-41-2)+ £,(4,2)y,(3-4,1-2)
x=4| f31)=£11D)y B-L1-1)+£(L1)y,(3-L1-1)+ =4 | f(31)=/£(1L1)yB-L1-1)+£(L1)y,(3-L1-1)+
y=1 £(L2)y,(3-L1-2)+ £,(1,2) »,(3-1,1-2) + =2 £(L2)y,(3-L1-2)+ £,(1,2) »,(3-1,1-2)+

f(20)y,(3-21-1)+ £, (2,1)y,(3-2,1-1)+
£(2,2)y,(3-2.1-2)+ £,(2,2)y,(3-2.1-2) +
£3.1)y,(3-3.1-1)+ £ (3,1)»,(3-3,1-1)+
£(3.2)y,(3-3,1-2)+ £,(3,2) »,(3-3,1-2) +
£(41)y,(3-41-1)+ £,(41) »,(3-4,1-1)+
£(4.2)y,(3-4.1-2)+ £,(4,2)y,(3-4,1-2)

f(20)y(3-21-1)+ £, (2,1)»,(3-2,1-1)+
£(2.2)y,(3-2.1-2)+ £,(2,2)y,(3-2.1-2) +
£3.1)y,(3-3,1-1)+ £ (3,1)»,(3-3,1-1)+
£(3.2)y,(3-3,1-2)+ £,(3,2) »,(3-3,1-2) +
£(41)y,(3-41-1)+ £,(41)»,(3-4,1-1)+
£(4.2)y,(3-4.1-2)+ £,(4,2)y,(3-4,1-2)

Table 5 — Missing Samples an Example

Page 50 of 101




r(11)
7(1.2)
r(2.1)
1(2,2)
7(3.1)
7(3.2)
7(4.1)
1(4,2)

The samples we have are £;(2,2), f, (1,1), /,(4,2) as the red lines in Figure 13 suggests. We

write the equations above as a linear system which divides between the known samples and the

unknown samples — 7 =h+ Ajl + 4, 72

y (1-1,1-1)
y (1-1,2-1)
y (2-1,1-1)
v (2-1,2-1)
v, (3-1,1-1)
v, (3-1,2-1)
y (4-1,1-1)
v (4-1,2-1)
y,(1-11-2)
y,(1-1,2-2)
v, (2-11-2)
v, (2-1,2-2)
y,(3-1,1-2)
v, (3-1,2-2)
v, (4-11-2)
v, (4-12-2)

We would like to find the samples 71 and 72 (which total in 13 missing samples as the

v, (1-1,1-2)
y (1-1,2-2)
v (2-11-2)
v (2-1,2-2)
y,(3-1,1-2)
v, (3-1,2-2)
v (4-1,1-2)
v (4-1,2-2)
v, (1-2,1-1)
v, (1-2,2-1)
v, (2-2,1-1)
v, (2-2,2-1)
y,(3-2,1-1)
y,(3-2,2-1)
v, (4-2,1-2)
v, (4-2,2-2)

y (1-2,1-1)
y (1-2,2-1)
v (2-2,1-1)
v (2-2,2-1)
v, (3-2,1-1)
v, (3-2,2-1)
v (4-2,1-1)
v (4-2,2-1)
y,(1-2,1-2)
v, (1-2,2-2)
y,(2-2,1-2)
y,(2-2,2-2)
y,(3-2,1-2)
y,(3-2,2-2)
v, (4-2,1-1)
y,(4-2,2-1)

£(22)y, (1-21-2)+ £, (L) y, (1-L1-1)+ £, (4.2) », (1-4,1-2)
£(22)y, (1-2,2-2)+ £ (L) y,(1-1,2-1) + £, (4.2) », (1-4,2-2)
£(22)y,(2-2,1-2)+ £(L1) y,(2-1L1-1)+ £, (4.2) », (2-4,1-2)
£(22)y, (2-22-2)+ £, (LD)y, (2-1.2-1)+ £, (42) »,(2-4,2-2)
£(22)y,(3-2,1-2)+ £, (L)) y, 3-L1-1)+ £, (4,2) »,(3-4,1-2)
£(22)y,(3-2,2-2)+ £ (1L,1) y,(3-1,2-1)+ £.(4.2) »,(3-4,2-2)
£(22)y, (4-21-2)+ £ (L) y, (4-11-1)+ £, (4.2) », (4-4,1-2)
£(22)y, (4-22-2)+ £, (L) y, (4-1.2-1)+ £, (4.2) y,(4-4,2-2)

y, (1-3,1-1)
y (1-3,2-1)
v (2-3,1-1)
v (2-3,2-1)
y,(3-3,1-1)
v, (3-3,2-1)
y, (4-3,1-1)
v (4-3,2-1)
y, (1-3,1-1)
v, (1-3,2-1)
v, (2-3,1-1)
v, (2-3,2-1)
y,(3-3,1-1)
v, (3-3,2-1)
v, (4-3,1-1)
v, (4-3,2-1)

y (1-3,1-2)
v (1-3,2-2)
v (2-3,1-2)
y,(2-3,2-2)
y,(3-3,1-2)
y,(3-3,2-2)
v (4-3,1-2)
v, (4-3,2-2)
v, (1-3,1-2)
v, (1-3,2-2)
y,(2-3,1-2)
y,(2-3,2-2)
y,(3-3,1-2)
y,(3-3,2-2)
v, (4-3,1-2)
y,(4-3,2-2)

v (1-4,1-1)
v (1-4,2-1)
v (2-4,1-1)
v (2-4,2-1)
v, (3-4,1-1)
v, (3-4,2-1)
v (4-4,1-1)
v (4-4,2-1)
y,(1-4,1-1)
y,(1-4,2-1)
v, (2-4,1-1)
v, (2-4,2-1)
v, (3-4,1-1)
v, (3-4,2-1)
v, (4-4,1-1)
v, (4-4,2-1)

v (1-4,1-2)
y (1-4,2-2)
v (2-4,1-2)
v (2-4,2-2)
v, (3-41-2)
y,(3-4,2-2)
y (4-4,1-2)
v (4-4,2-2)

1.(1,2)
7.(21)
17.(2.2)
7.1
£.(3.2)
7.(41)

Ay
£(1.2)
£(21)
£G1)
£(3.2)
£(41)
£(4.2)

yellow lines in Figure 13 suggests). For this purpose we write the equations above in this form

but before plugging in the values of x and y .

This enables us to first integrate and then yield interesting results in the LHS of the system of

equations.

The equations which we yield by integrating the equation along the first type of functional are-
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£ (L)
£(1,2)
£(2.1)
£(2,2)
£(31)
£(3.2)
£(41)
1 (4.2)

£(2.2) Ay + £(1L1) Ay + £.(42) Ay,
£(2.2) Aoy + £,(1L1) Ay + 1,(4,2) Ay
£(2.2) Ay + £,(1L1) Ay + £.(42) Ay,
£(2.2) Ay + £,(L1) Ay + 1,(4,2) Ay
£(2.2) Ay + £(1L1) Ay + £.(42) Ay,
£(2.2) Ay + £,(1L1) Ay + 1,(4,2) Ay
£(2.2) Ay + £,(11) Ay + £.(4,2) Ay
£(2.2) Ay + £(11) Ay + £.(4,2) Ay,

SN

1111

N

1111

PN

1111

'

1111

N

1111

SN

1111

N

1111

N

1212

'

1212

'

1212

N

1212

'

1212

N

1212

'

1212

N

1212

'

1122

N

1122

'

1122

'

1122

N

1122

'

1122

N

1122

SN

1122

N

1221

'

1221

'

1221

N

1221

'

1221

N

1221

'

1221

N

1221

'

1121

N

1121

'

1121

'

1121

N

1121

'

1121

N

1121

N

1222

'

1222

'

1222

N

1222

'

1222

N

1222

'

1222

N

1222

'

1131

N

1131

'

1131

'

w

N

1131

'

w

N

w

1231

N
w

IS}
w

1) IS}
w w

IS}
w

[~ O SO NG SO N O N N

1231

BB o

AN

1232

N

1232

N

1232

A

1232

N

1232

A

1232

N

1232

A

1232

N

1141

AN

1141

N

1141

N

1141

AN

1141

N

1141

AN

1141

A

1241

N

1241

N

1241

A

1241

N

1241

A

1241

N

1241

A

1241

A
A1142 f‘(l,l)
1142 <f;(1,2)
‘41142
£(2.1)
A1142
FAERY)
/t142
y £(3.2)
1142
£(4.1)
/%142 f~(4 2)
A1142 ‘ ,
£.(1,2)
£(2,1)
£(2,2)
£(3,1)
£.(3,2)
£ (41)

The equations which we yield by integrating the equations along the second type of functional

are of similar form and are given by -
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f2 (1’1) fu(z’z)AZIZZ +f: (1’1)A2211 +fz (4’2)A2242 A2111 A2112 A2121 A2131 A2132 A2141 A2142

ACD)
£, (1,2) F(2.2) Ay + £, (L1) Ay + £ (4,2) Ay A Az A Az dun A dis 7(1,2)
£ (2.1) F(2.2) Ay + £, (L1) Ay + £ (4,2) Ay i e A Ann A A Aaa 7
f2 (2’2) _ f| (272)‘42122 + fz (1’1) A2211 + f; (4’ 2)A2242 n Alel A2112 A2121 A2131 A2132 A214l A2142 f (3 1)
£ (3.1) F(2.2) Ay + £, (L1) Ay + £ (4,2) Ay A Az A iz dan s dis 7G.2)
f2 (3’2) f| (272)‘42122 +fz (1’1)A2211 +fz (4’2)A2242 Alel A2112 A2121 A2131 A2132 A214l A2142 f(4 l)
£, (41) £(2,2) Ay + £, (1) Aygyy + £, (4,2) Aypgy A Az A iz dun A das f(4 )
fé (472) f. (272)‘42122 +f3 (1’1)A2211 +fz (4’2)A2242 Alel A2112 A2121 A2131 A2132 A214l A2142 I
A2212 A2221 A2222 A2231 A2232 A2241 (3 43)
A2212 A2221 A2222 A2231 A2232 A2241 fz (1’ 2)
A2212 A2221 A2222 A223l A2232 A2241 f; (2’ 1)
4 A2212 A2221 A2222 A2231 A2232 A2241 fz (2’ 2)
A2212 A2221 A2222 A223l A2232 A2241 f; (37 1)
Aoy Ay Ay Ay Aypy Ay || £(3.2)
A2212 A2221 A2222 A223l A2232 A2241 f; (47 1)
A2212 A2221 A2222 A2231 A2232 A2241
From these equations we can generate a system of equations which will enable us to reveal
whether we may reconstruct the signal by checking the determinant of this system. The new
system of equations will be built by choosing a subset of equations out of the ones we showed
above. We choose only those equations which have a missing sample appearing on the RHS.
This will give us exactly 13 equations.
This in fact is the process which yields the augmented matrix which in this case is —
fl h1 I- A11 i _AIZ
M|~ |=| 7 M = | = 3.44
(fz hz -A, | I-A, ( )
The dimensions of the matrices A, are determined by the amount of missing samples from
each sampling functional. In this example their dimensions are given by —
[A,]=7x7,[A,]=7x6,[A,]=6x7,[A,]=6x6 (3.45)

Due to the fact that we have 7 missing samples from the first sampling functional and 6 from

the second. A numerical calculation of the determinant of M may prove that it is identically
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zero, a case in which we cannot reconstruct the missing samples from the ones we have. This is a

sensible result due to the fact that we are missing a very large amount of samples.

3.1.9 Integrating the 3 Phases

In sections 3.1.3, 3.1.5 and 3.1.7 I have described a procedure with which one may test if a
concrete realization of the Arbitrary Line Projections sampling scheme renders a reconstructable

function. These tests involve the following stages —

1. Identify the linear sampling functionals after choosing A,,A,

2. Calculate the GSE determinant using these functionals and ensure it is non-zero for every
frequency in y =[-0,,—0, +¢,|x[-0,.—0, +¢, ]
Regularize the non-regular grid using the sampling functionals.

Identify the missing samples and calculate the augmented matrix M

Ensure the determinant of M is non-zero

N koW

If all of the tests above have passed we proclaim the sampled function to be

reconstructable

3.1.10 Computational Complexity of the Solution

3.1.10.1 Definitions and Notations
As stated in section 3.1.9, applying our solution to the problem of identifying sampling

schemes which yield reconstructable functions involve three phases. These are; identifying the
sampling functionals and regularizing the grid, calculating the GSE matrix and evaluating its
determinant and finally, calculating the augmented matrix and ensuring that it is non singular by
evaluating its determinant.

Let us use the following notations for the sake of developing analytical terms which determine

our computational complexity -

Term Explanation

m Number of distinct sampling functionals
n Number of samples

P Ratio of missing samples

fiJe {L,...n} | The ;" sample
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j€{l,...n} | The ;" sample x coordinate

J
f7 je{l,..,n} | The j" sample y coordinate
k

The amount of samples including missing ones (after regularization)
The step size for evaluating the GSE determinant

The integration step size for constructing the augmented matrix

Table 6 — Computational Complexity Terms

3.1.10.2 Complexity of Coping with an irregular grid
The identification of distinct sampling functionals requires checking whether pairs of samples

were projected along similar sampling functionals, as suggested in Table 3. This implies that

calculating m requires a number of operations which is proportional to —

o(n*) (3.46)

Calculating the amount of missing samples requires calculating regularizing the grid, which

requires calculating the GCD from »n samples. The complexity of calculating the GCD, using

Euclid's algorithm is known to be O((rnax{flog2 al,[log, b—‘})S) where a and b are a pair of

numbers. In our case, we apply a recursive GCD with the coordinates of our » samples. Hence,

the complexity of the regularization phase is —

O((mlax{[logz f}}fj (3.47)

3.1.10.3 Complexity of the Generalized Sampling Expansion Usage
The GSE matrix dimensions' is mxm. The most straightforward method to calculate a

matrices determinant employs the LU decomposition which is known to have a complexity of —
o(m") (3.48)
Let us recall that employing the GSE expansion assumes that f (x, y) is a (ax,ay) band

limited function as defined in (1.33). We must then evaluate its determinant for a set of

frequencies in the range which is given by —

(u,v)e(-o,,—0, +20, /m)X(—O'y,—O'y +20, /m) (3.49)
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Defining the evaluation step size by A, we have to evaluate the GSE determinant a

following number of times —

( 20, 20, j 40,0,

= (3.50)
mA ;g MA G (mAGSE )2

Considering this together with the complexity of the LU decomposition algorithm, gives us

the total complexity which is required for evaluating the GSE determinant —
3 1
O| maxym',——— (3.51)
(mAGSE )

3.1.10.4 Complexity of coping with Missing Samples

The last phase which we must employ is the evaluation of the augmented matrices
determinant. We assume that once we know the amount and locations of the missing samples,

they endure the following relation —

n
k=— (3.52)
P
This also means that the amount of missing samples is given by-
1—
PR ) (3.53)

P

We must then construct a matrix of which dimensions are (k—n)x(k—n) and evaluate its

determinant which yields a complexity of —

O((k—n)3)=0(n3 (1_’5)3} (3.54)

Yo,

We must calculate (k — n)2 integrals each of which requires three integrations, as suggested in

section 3.1.7. We define the integration units as follows —
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du=—— dv=—"— dt=— (3.55)

GSE GSE AM

This implies that the integration along a single missing sample requires —
1 1 4o 0
O|| —du || —dv pdt |=0| ————— (3.56)
m m Ay (mAGSE )

Finally, the phase of coping with the missing samples is of a complexity of —

O[max{(kn)3 ’A(l((m_—:)z)zH (3.57)

3.2 Non Reconstructable Geometries

In the following section we discuss different choices of sampling functionals which cannot
yield reconstructable functions. Such a prior knowledge on the sampling sets which always yield
a reconstructable or non reconstructable function may clearly decrease the complexity of solving

the questions regarding the reconstructability, as suggested in section 3.1.10.

3.2.1 Two Equally lengthed Sampling Functionals with Different Angles

Lemma:

No two lines with different angles but with equal lengths will always yield a non
reconstructable function in the case of equal horizontal and vertical sampling rates

Proof:

Without loss of generality we choose 6, =0. A different angle is simple a rotation of the axis.

The GSE determinant which must be evaluated is given by —
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sin (u) sin ((cos G,u +sin 6,v))

H, (u,v) H, (u,v) u (cos Bu +sin 6,v)
H, (u+cx,v+cy) Hz(u+cx,v+cy) - Sin((u+cx)) sin((cos¢92(u+cx)+sinc92v(v+cy))) (3.58)
((u+c,)) (005492 (u+cx)+sinc92v(v+cy))
We evaluate this determinant and yield —
sin () sin((cos 0, (u+c,)+sin 92V(V+Cy))) sin((u+c,)) sin((cos Gu +sin 6,v)) (3.59)

u (00592 (u+c,)+sin sz(v+cy)) ((u+c,))  (cos@u-+sin6,v)

Requiring that this sampling set yields a non reconstructable sampling set means that we can
find a set of frequencies which plugging them into the determinant nullifies it. And indeed,

choosing,

quz—% (u,v)ey (3.60)

Gives us the following -

snf-g sl (w5 o) rsna (-5 o)) sn{(- e Jon{{soe 5 wsne )

S o[ Grcfna(Zee)]  [(Gea]) [wmagemay)
Manipulating these equations gives —
_sin (‘;j sin [(cos 0, [Zj +5in6), [Zm sin (‘;) sin ([cos 0, (‘;j +sin6), (‘;D]
5 el eag) [ (eolelz) T
sm(cos 6, [ j+ sin6), [m _sin([cos 0, U +sind, [m
_ =0 (3.63)

calgmals) walz)mnll)
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il e s )] (w2 Jrome (7))

- -0 (3.64)

a(Somal3))  [emal)ome (3]

This proves that for a sampling set which is composed of two lines with simmilar length but with

different angles, no reconstruction of a band limited function can achieved.

3.2.2 Two Different lengthed Sampling Functionals with 90 deg appart

Lemma:
No two lines with different lengths but with an angle of 90° between them will always yield a

non reconstructable function

Proof:
Without loss of generality we choose 6, = 0. A different angle is simple a rotation of the axis.

The GSE determinant which must be evaluated is given by —

sin(ul, /2) sin (v, /2)
ul, /2 VW, /2 _Sin(qu/2)sin((v+c},)Wz/2)_sin(sz/2)sin((u+cx)Wl/2) 165
sin((u+c,) W, /2) sin((v+cy)Wz/2)_ ul, /2 (v+e, )W, /2 v, /2 (ute, )W, /2 (3.65)
‘ (utc, )W, /2 (v-i—cy)Wz/2 ‘
We evaluate this determinant and yield —
sin(ul; /2) sin((v-e, )W 12) sin(v1, 12) sin((u + ¢ )W, /2) (3.66)

u (v+cy) 1 (u+cx)

Requiring that this sampling set yields a non reconstructable sampling set means that we can
find a set of frequencies which plugging them into the determinant nullifies it. And indeed,

choosing,
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u=——=,v=—->="(u,v)ey (3.67)

Gives us the following -

. o o, .
sin(—azx W /2j Sln((—2y+0ijV2 /2) sin(—zJW2 /2] sm((_ Zx +O—ijVl /2j

(3.68)
- Pho 2 (—6x+0'j
2 2 2 2
Manipulating these equations gives —
. O : Gy . O-y . (o2
sin| —=W, /2 |sin 7Wz/2 sin 7Wz/2 sin 2x W, /2
2 - =0 (3.69)

o, o, o, o, j
2 2 2 2

This proves that for a sampling set which is composed of two lines with different lengths but

7\

with an angle of 90° apart, no reconstruction of a band limited function can be achieved.
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4 Application

4.1 Coverage

The following figures depict the results of an implementation of a tool which receives link
coordinates, quantization values and lengths at its input and generates coverage maps. The tool
enables setting the generalized ellipse's parameters as the cloud profile. It also enables choosing
the power law coefficients.

We applied the simulations below on a set of links from the Israeli cellular service provider
named Cellcom. These included a set of 3515 links. We chose the power law coefficients as

a=0.15b=1.09 due to the fact that the links operate at frequencies ranging at around 27Ghz .

We also simulated threshold maps as discussed in the previous section.

One may easily notice that the cloud's profile vastly affects the size of the areas which are
undetectable or out of coverage. This tool gives an insight on the locations where rain gauges or
other rain monitoring equipment must be added in order to achieve a flawless system. We

discuss this issue more in depth in following section.
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Cloud Profile:
H.5.=0.1 V.5.=0.1 &=0 i
Res=0.05 Detection Map

345 5 355

4918

26.41

13.97

Figure 14 —Coverage Map |
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Cloud Profile:
H.S.=0.1 V.S.=0.1 &0 .
Res=0.05 0.3mmirh Detection Map 0.5mm/h Detection Map 0.7mm/h Detection Map

344 346 348 35 382 /4 3B/E IS 344 346 348 3B 3}/2 3FH4 FE A 344 346 348 35 352 354 356 358

0.9mmih Detection Map 1.1mmih Detection Map 1.3mmih Detection Map 1.5mmih Detection Map

34 3B 348 3/ P2 B4 BH BA 34 305 M8 3 /2 /A 6 38 M4 ;B L T =2 Y =B EE 344 346 348 3 352 354 3I5E I8

Figure 15 — Coverage Threshold Map I
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Cloud Profile:
H.§=0.1%.5.=0.2 &30
Res=0.025 Detection Map Link Map
4918.53

1963.28

F783.3

F 31216

- —124.04

F —48.93

F 1893

Figure 16 — Coverage Map II

Cloud Profile:
H.S.=0.1V.S.~0.2 &30
Res=0.025 = 0.3mmih Detection Map 0.5mmih Detection Map 0.7mm/h Detection Map

344 3ME 348 35 352 3|4 3/E 3k8 344 346 348 35 3/2 B4 BE IKE 344 346 M8 3IF 3B/2 34 BE FE8

Figure 17 — Coverage Threshold Map II
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Cloud Profile:
H.S.=0.05 V.5.=0.15 =20 .
Res=0.01 Detection Map

2141.93

£ 41026

- 17816

- 7793

- 3358

£ 1418

5.64

191

345 35 355

Figure 18 — Coverage Map IlI
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Cloud Profile:
H.5.=0.05 V.5.~0.15 e=20
Res=0.01 0.3mm/h Detection Map 0.5mm/h Detection Map

344 346 348 35 352 F4 IHE FE 344 346 348 35 352 3B/4 3FE /I
0.7mm’h Detection Map 0.9mmih Detection Map 1.1mmih Detection Map

344 348 348 35 352 354 356 358

344 346 348 3/ 32 F4 IHE FE 344 346 348 35 32 34 IE b6

Figure 19 — Coverage Threshold Map III
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4.1.1 Sensitivity to Network Parameters

The problem of constructing a rain map via CWN as discussed in section 2.1 involves
choosing or determining the rain profile which is of interest. Given a set of links one may then
apply the procedure which was presented in section 4.1 for the sake of locating the undetectable
regions or areas out of coverage.

Once undetectable regions were located, one may choose to apply a number of actions in order
to improve the detection coverage:

1. Increase the operational frequencies of the existing links. This in turn will yield a
higher sensitivity of the links to the rain rate, as is depicted in Figure 5.

2. Increase the length of the existing links. This will assist in reaching the quantization
level and will enable covering more areas. However this will assist only in cases where
the cloud profile is larger than the existing links and where increasing the line length
will cause an increase in the line intersection.

3. Decrease the quantization of the links and by such increase the links' sensitivity to
detecting rain

4. Add links in areas which are out of coverage

In Figure 20 we simulate the effect of choosing a different operational frequency. The left
figure depicts the minimal detected rain in case the links operate at a frequency of 5 GHz, the
middle figure includes links operating at a frequency of 25 GHz and the right most figures
includes links operating at a frequency of 40Ghz.

In Figure 21 we simulate the effect of choosing a different quantization. The left figure depicts
the minimal detected rain in case the links operate at a quantization of 1dB and right figure
includes links operating at a quantization of 0.1dB.

In Figure 22 and Figure 23 we show the thresholded maps of Figure 20 and Figure 21

respectively.
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Cloud Profile:

H.5.=0.1 V.5.=0.1 &0
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Figure 20 — Improving the Coverage — Links Operational Frequency

Figure 20 clearly shows the fact that as the operational frequency increases, so does the

sensitivity to the rain rate.

Cloud Profile:
H.5.=0.1 V.S.0.1 8=0 )
Res=0.05 Link Map Detection Map 1dB Detection Map 0.1dB

F 1612
F 49.19 L lioss
i R

- —6.69
F 13.97

F 418

Figure 21 — Improving the Coverage — Links Operational Quantization

Figure 21 clearly shows the fact that as the quantization decreases, the sensitivity to the rain

rate increases.
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10mmih Detection Map 5Ghz 20mmih Detection Map 5Ghz 30mmih Detection Map 5Ghz

25
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0.3mmih Detection Map 25Ghz. 0.5mmih Detection Map 25Ghz 0.7mm/h Detection Map 25Ghz

34 346 MUB 3B B2 B4 BH B 344 345 348 35 352 b4 B6 38 344 346 348 35 B2 B4 36 B8
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Figure 22 — Improving the Coverage — Links Quantization Tresholded
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Figure 23 — Improving the Coverage — Links Quantization Tresholded
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4.2 Reconstructability

4.2.1 Example 1

Let us consider the set of wireless links around the area in Israel named Ramot-Menashe. We
examine a set of links in that area and find the links depicted in Figure 24.

One may easily identify that in this case there are two different types of sampling functionals
despite the fact that we have three links (two of the links are similar in length and angle). We
apply the regularization procedure described above and yield the regularized grid of sampling
functions as depicted in Figure 24 on the right hand side.

Ramot Menashe Cellular Links Ramot Menashe - After Regulrization

Figure 24 — The Microwave Links in Ramot-Menashe

Once the two sampling functionals have been determined we may calculate the GSE

determinant which is given by the following —

sin((ucos6, +vsin, )W, / 2) sin((ucos@, +vsin6, )W, / 2)
(ucos6, +vsin6 )W, /2 > (ucos@, +vsin6,)W, /2
sin(((u+0'u)cost9l +(v+0,)sin6, )W, /2) sin(((u+0'u)cost92 +(v+0,)sin6, )W, /2) 1)
((u+0,)cos6, +(v+0o,)sin6, )W, / 2 ? ((u+0,)cos6, +(v+o,)sin6, )W, / 2

where o,,0, are related to the grid distances A ,A, by 2A =o' and similarly for o, .

Numerically evaluating this determinant for the set of required frequencies y proves that it is

non-zero and that usage of these two sampling functionals may enable a reliable reconstruction.
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Determinant of Example | {Two Functionals)

Vertical Spatial Frequency [-av:O]

-B0 140 1200 4100 -BO B0 -40 20
Horizontal Spatial Frequency [-UU:O]

Figure 25 — The GSE determinant - example I

We now commence with the test process. We are now left with the evaluation of the
augmented matrix determinant. The missing samples are those marked in yellow in Figure 24.

Let us denote by g, the longer sampling functional and by g, the shorter sampling functional.

i.e. — we are missing the following samples —

gl(l’l)’gl(1’2)’g1(1’3)’gl(1’4)’g1(2’1)’g1(2’3)’g1(2’4)

4.2
2.(12).8:(13). 2, (14). 2. (21). 22(2.2). 2(2.3) 42

We now must construct the augmented matrix. This is actually, the exact case which we

explicitly solved in section 3.1.8. This process yielded the following structure for the augmented

8 h I-A, | A,
M(é} B [zzj M= [ _AZI I- Azz) (4.3)

Calculating the determinant of M proves that it is singular and thus we cannot reconstruct the

matrix.

missing samples from the ones we have. This is a sensible result due to the fact that we are

missing a very large amount of samples.
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4.2.2 Example 2

Let us consider another set of lines as given in Figure 26. One may easily identify that in this
case there are three different types of sampling functionals. We apply the regularization
procedure described above and yield the regularized grid of sampling functions as depicted in

Figure 26 on the right hand side.

Aribtrary Line Sampling - Example Il Aribtrary Line Sampling - Grid Regularization - Example Il

Figure 26 — The Arbitrary Lines — Example II

Once the three sampling functionals have been determined we may calculate the GSE

determinant which is given by the following —

sin((ucos@l +vsinn9l)%) sin((ucosﬁ2 +V5in5z)%j sin((ucos@3 +vsin6’3)%]
" W K W, " W,
(ucos6, +vsinn9)—‘ (ucos@, +vsin 6, )72 (ucos 6, +vsin 6. )73

sm(( u+—)cos€ +[v+2T s1n¢9 j
" 20
[(u+—)cos€ +(v+ 3 s1n¢9]
4o
[[ u+—)cos€ J{HT s1n¢9 ]
4o
((u+—)cost9 +(V+T s1n¢9j

u+— cosa + v+2T sma ]

u+— cosB v+£)sin93 LA
3 2

W, (4.4)

s1n(
( u+— cosB v+i)sin93]—3
3 2

I
3

u+— cosa v+4T sma ] u+— cosB + v+4T)s1n9]W]

2

ﬁ
ﬁ

sm(
(u+— cos& V+T sm&]

u+— cos@ V+T sm@] u+— cos6’ v+%)sin6’3j%

Similarly to the first example, o,,0, are related to the grid distances A ,A by 2A =o'

and2A  =o,'. Numerically evaluating this determinant for the set of required frequencies

v =[-o,,-0, /3]x[-0,,—0, /3] proves that it is non-zero and that using these three sampling
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functionals may yield a reliable reconstruction. The numerical evaluation of the determinant

appears in Figure 27.

Determinant of Example Il {Three Functionals)

Vertical Spatial Frequency [-o,,:-o, /3]

20 -15 -10
Horizontal Spatial Frequency [-uu:-nLga]

Figure 27 — The Arbitrary Lines — Example II — The GSE Determinant

We are now left with the evaluation of the augmented matrix determinant. The missing
samples are those marked in yellow in Figure 26. Let us denote the sampling functionals of

which we have missing samples g, and g, (meaning g, doesn't have any missing samples).
This in turn means that we are missing the samples g (2,1)and g, (1,2). We now must construct the

augmented matrix —

g (2,1) =h+g (2a1)A1111 +8, (1’2)A1211

4.5)
8> (192) =h, +g, (2’1)‘42111 +4, (1’2)142211

Writing this in matrix form we have —
M:(I_Sun Sia11 j (4.6)
Son 1=s5,

However, numerically calculating the determinant of M proves that it is singular and thus we
cannot reconstruct the missing samples from the ones we have. This is due to the fact that when

we apply the GSE theorem we define —

T.=3T,,.
e (4.7)
y = 3TNyq,y
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The value of 3 represents three sampling functionals, and it means that we may sample 3
times s/lower and still reconstruct samples functions up to the same original Nyquist frequency.
This also means that we aren't over-sampling. We are sampling with the slowest sample rate

required in order to reconstruct a function to its Nyquist frequency. If we recalculate M using a

faster sampling rate of—

T = 2TN},q,x
Ty = 2TNyq,y

we find that |M| # (0. This means that using the samples we have, we may now reconstruct the

two missing samples.
4.2.3 Example3

We now consider the case of links which was suggested by Giuli [15] as depicted in Figure 28.

In their article, Giuli et a/ showed cases of rain events which their links are able of reconstructing

properly. These rain events are shown in Figure 29.

:__ lsl(mlh
. .
. =4

Figure 28 — The Giuli Links [15]

Using our method we show that errors can indeed occur if Giuli's set of links is used for rain
events with a high spatial frequency. Moreover, visually considering the rain events which they

simulated easily shows the very low spatial frequency nature of the chosen events. Giuli et a/

chose to simulate rain events with a decay rate of ~ 4m%r- fm in a cell size of 15km>, a very

low spatial frequency, which isn't very prone to errors.

Page 75 of 101

(4.8)



Real dato Temogrophic reconstruction
20.00

20.00

15.00 15.00

10.00

(Km)

15.00

(Km)

5.00 - 5.00

Real data

O

5.00

20.00

15.00

PSR S S S SR R S|
%00 5.00 10,00 15.00 20,00
(Km)

Figure 29 — The Giuli Rain Events [15]

Let us consider another set of lines as given in Figure 30. One may identify that in this case
there are eight different types of sampling functionals. However, in our simulation we chose to
quantize the angles in a manner which yields only 4 distinct line types. We apply the
regularization procedure described in the previous sections and yield the regularized grid of

sampling functions as depicted in Figure 30 on the right hand side.
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The Giuli Links

The Giuli Links - Regularized

Figure 30 — The Giuli Lines Regularized— Example III

Once the three sampling functionals have been determined we may calculate the GSE

determinant which is given by the following —

sin((ucosﬁl +vsin91)%j sin((ucosﬁ +vsin6, J sin[(ucos& +vsin, sin((ucosﬂ4 +vsin94)%j
W, W,

IR

4

"

(ucos6, +vsin6, )%

W,

1

u+— cosH+ v+ 20, sing, |
4 2

)

m

u+— cosH + v+— sin 6, i
3 2

/4

ol
[ u+—" COSG + v+7jsln9]z
(.
(

u+— c050+ v+ 3 Jsm@j

2

(ucos@, +vsin, )=

N‘§ NT§

(ucos6, +vsin6; )

“WNT%

W,

sin u+6& cos 0, + v+E sin @, LA
4 3 2

(ucos @, +vsin 6’4)%

((u+6ijcosg +(v+60 Jsma j
3 3

W,
2

Similarly to the first example, o,,0, are related to the grid distances A ,A by 2A =o'
and2A  =o,'. Numerically evaluating this determinant for the set of required frequencies
v =[-0,,—0,/4]x[-0,,—0, /4] proves that there is a set of frequencies for which no reliable

reconstruction can be made. The numerical evaluation of the determinant appears in Figure 31.
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Determinant of the Giuli Links System (Four Functionals)

—

22

Vertical Spatial Frequency [-qv:-anZ]

LT -16 15 14 13 12 -1
Horizontal Spatial Frequency [-uu:-uUIZ]

Figure 31 — The Giuli Lines — Example III — The GSE Determinant

4.2.4 Example4

The purpose of this example, as opposed to the previous examples is to present the weaknesses
of our suggested solution. Our procedure for stating when a set of lines composes a proper set
which will ensure the ability to reconstruct a sampled function isn't a two-directional procedure.
In other words, it is a sufficient but not necessary condition. One may find a set of lines which
our procedure states as insufficient for the sampling and reconstruction task however, intuition
states that due to their nature they seem sufficient indeed.

The example below shows that the intuition may work well by considering links of urban vs.
rural areas in Israel. Clearly, as we move from an urban through a semi-urban to a rural area, the
density of links decreases. This notion is also depicted by the histograms in Figure 2 where one
may notice how the spread changes as we move from the central and urban area of Israel outside
towards the sub-urban areas. In the most rural area of Israel, the centre of the Negev, the links of
which direction is from north to south are usually very long. Being a rather rural area, these links
serve a very small amount of population and hence, the CWN engineers attempt to minimize
their amount. However, due to the fact that Israel is very long and narrow, the links from east to

west have a length which may easily be found in urban or sub-urban areas too.
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This nature of links causes the regularization process to return a very large amount of missing
samples. This in turn, clearly causes the sampling set to be an insufficient set for the task of
sampling and reconstruction. However, in urban areas where a very dense set of lines is present,
the regularization process may also yield a very large amount of missing samples. This is
because in such an area, a very large amount of distinct links are extant. This is most probably
the most prominent weakness of our procedure.

In the figure below we operated our procedure on three areas of Israel, two urban areas and

one rural area. We chose quantization values A, and A, which yielded only four types of

distinct lines. This is of course a very crude approximation of the line types and it yields a very
inexact approximation of the existing links. However, it also greatly assists in decreasing the
amount of missing samples. This is because more of the existing links are quantized to one of the
distinct types.

Our intuition was that the two urban areas would yield a reconstructable set and that the rural
one would yield an improper sampling set. However, as is seen in Figure 32, our suggested
procedure states that one of the two urban areas is an insufficient sampling set. In Figure 32 we
see the map of Israel links with three rectangles which surround the areas and links on which we
operated our suggested procedure. The rectangles which are colored blue were found to be a
sufficient set for the reconstruction task whereas the red rectangles which are colored red were
found to be an insufficient set for the reconstruction task.

This result is what emphasizes that the central weakness of our procedure is its attempt to
regularize a highly irregular grid. We believe that a treatment of the reconstructability problem
may be better treated within a framework of "irregular sampling". Moreover, such a large
amount of missing samples, which is usually the output of the regularization algorithm, may
yield a singular augmented matrix M simply due to numerical instabilities (and not due to a true
singularity). We discuss this future direction in section 5.

In general we find it tough to state precisely what are common maximal spatial frequencies
which are reconstructable in urban, sub-urban or rural areas due to the nature of our
regularization process which may yield many missing samples for slightly different sampling

realizations.
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Figure 32 — Israel Links — Example IIII

Page 80 of 101




5 Discussion

5.1 A Discussion on our Simplifications and Future Directions

In the preceding sections we discussed a few methods for determining when and where a set of
lines may function properly in the task of generating coverage or reconstructability maps. The
coverage maps, as mentioned above, are maps which state the locations which a level of rain
above a sensitivity threshold may be detected. For the purpose of this problem we simulated a
cloud which "scans" the map of lines in the country of Israel. For each line and cloud intersection
we solved an equation which returns the minimal detectable rain rate. However, we have clearly
simplified the problem immensely by assuming the cloud is a compact geometrical shape with a
closed analytical form. Moreover, we have also assumed that within this closed geometrical
shape, the rain rate is constant. These two assumptions may be easily relaxed for the task when
the problem of generating coverage maps is treated in a brute force manner via a simulator. Any
cloud profile with any rain rate within its form may be chosen and simulated for.

We find the relaxation of the cloud profile to be a future extension direction which is
inevitable. By properly looking into the statistical properties of rain fronts, one may choose a
cloud (or rain front) profile which is properly reasoned and provides covrerage maps which any
meteorological service can benefit from.

We have also presented a method for determining whether an Arbitrary set of Projections
along lines composes of a sampling scheme which yields a reconstructable function and to what
frequency may a reliable reconstruction be held. This requires applying the Papoulis GSE,
regularizing a non-regular grid with missing samples by the method described above, and finally,
calculating what we have defined as the augmented matrix and testing for its singularity.

We would like to state that for the case of two types of lines, there are certain angles between
the lines which yield a non reconstructable function. An obvious example is the case where there
is an angle of 90° the lines. The arguments of the sinc functions in the GSE determinant are then
exactly equal for any v =0 and thus yield a determinant which is equal to zero.

We have also found that no sampling scheme with only two lines and at least one missing
sample may be reconstructed. This is due to the fact that sampling with only one type of line is

equivalent to multiplying our spectrum with a sinc function which has numerous nulls in the
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frequency domain. Hence, the fact that we have missing samples leaves us with some samples
which contain missing data due to these sinc nulls.

We find the first future research which should be treated properly is relaxing the requirement
to regularize an irregular grid. The need to regularize the grid causes the need to evaluate
determinants of very large matrices (in the part of determining the ability to cope with missing
samples). We have also found cases in which a great number of lines covers a sampled area and
which, despite one's intuition, our procedure states is a sampling set which yields a non-
reconstructable function. This is the strongest reason proving that the regularization process must
be relaxed and treated otherwise. We stress that the procedure shown above provides a sufficient
but not necessary condition for the reconstructability. We believe that this problem may
somehow be treated within the framework of irregular sampling but this direction hasn't been
fully pursuited.

Also, we haven't explored the questions regarding the exact dependencies between the GSE
matrix singularity and the lengths and angles of the sampling lines. It seems that an answer to
which types of lines yield singular matrices and exactly why these lines cause the matrix's

singularity may lead to insights dealing with a smart choice of these lines. Stressing yet again

that more sampling lines in each sampling location yield a sampling grid which is O(mz) times

less dense, motivates us to know exactly what types of lines to choose according to their lengths
and angles. This in turn may enable the reduction of the sampling grid density (and reduce the
sampling rate).

The method suggested here may also be generalized for different types of sampling
functionals. One may want to combine between sampling both with line projections and point
samples (rain gauges).

Usage of such a sampling scheme may greatly assist in reducing aliasing artefacts. This is due
to both the low-pass nature of the local averaging due to the projections, and the added
randomness which tends to reduces aliasing.

We would like to stress that this work dealt only with the answer to the question regarding
“whether a reconstruction is feasible”. If the procedure shown above yields a positive answer, the
framework showed here also hints on the method of reconstruction. Usage of the interpolation
kernels as given in (1.39) may assist in reconstructing the sampled function. However, we
currently leave the question of determining what to do in case a sampling scheme was found to

be insufficient for reconstruction unanswered.
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Obviously this answer requires finding the exact critical missing samples, and then considering
the “optimal” locations to add samples (line projections) to. However, as in the Nyquist sampling
theorem, these reconstruction kernels have infinite support and by such limit our ability to
perfectly reconstruct the sampled signal.

We would also like to note that the solution to our problem only required evaluating the exact
value of the reconstruction kernels at specific points and as such didn't require their determining
their exact functional form. However, a reconstruction of a sampled function will clearly require
the need to know their exact form.

Another direction which we have touched only minimally was the treatment of this problem in
the framework of stochastic processes. We have shown a method to evaluate or calculate the
exact autocorrelation function of the sampling process (see the appendix). In our solution to this
problem we assumed a uniform distribution of distance perturbations between adjacent lines, a
uniform distribution of the line angles and finally, an exponential distribution of the line lengths.
These assumptions enabled calculating the autocorrelation function in this particular case. From
this point it is summoned upon to test the autocorrelation function for a variety of input spectra
in order to find exactly under what terms can the input spectra be properly reconstructed.

However, we emphasize that such an approach will only tell us if the average spectrum can be
properly reconstructed. Employing the stochastic processes framework will never tell us if a
concrete realization of a sampling set may be properly reconstructed. For an answer regarding a
concrete specific sampling set one should follow an approach which resembles the approach
which we have suggested here, the one which states when a set of lines indeed yields a
reconstructable sampling set.

Another direction which we found interesting but which we haven't fully explored in this
thesis is the assumption of sparsity of the rain signal. If one is able to properly justify such an
assumption, and find the basis with which the rain signal is sparse, he would be able to use
compressive sensing tools which enjoy the ability of not needing to assume that the sampled
function is band limited. And indeed, local rain events intuitively don't seem to have a band
limited nature due to their very local nature. Such a rain event may consist of a very strong rain
in a very small local area. As such, the rain resembles a rectangular function which, as is known,

doesn't have a limited bandwidth (its Fourier transform is a sinc function).
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I list below the future directions as I see them:

e Generalize the cloud profile for the coverage problem

o Consider statistical properties of rain clouds for the coverage problem

e Relax the regularization requirement in the reconstructability problem
Consider non-uniform sampling for this purpose

e Provide necessary and sufficient condition to the reconstructability problem (as
opposed to sufficient only)

e Analyze exactly where should a link be added for reaching reconstructability

e Extend the reconstructability problem to an actual reconstruction of a rain map

5.2 Adding Rain Gauges

After having treated the question regarding the reconstructability of a two dimensional
function which is sampled by projections along lines with arbitrary geometry we may come
across a set of microwave links which yield a non reconstructable function.

The problem of how to reconstruct rain maps from this set of microwave links is then left
open. Even if we knew which missing link is the one which renders the reconstruction process
impossible, it is rather obvious that we may not be able to add a microwave link in the required
location. This is mostly due to the price of such a link and our ability to intervene with the
cellular operator's link management task.

We would then like to add a cheaper rain monitoring device, a Rain Gauge.

Rain Gauges are most probably the first precipitation (rain) measurement tools ever to be used.
A Rain Gauge is a receptacle which is designed to measure the amount of rain which reaches the
surface by simply accumulating it. Being so, its measurements are usually thought of as point
samples.

The main advantage of Rain Gauges in comparison to the alternative rain measurement
systems is their low price and lack of any calibration process. However one must consider the
difficulty in deploying a network of Rain Gauges which appropriately samples an area of
interest. Moreover, acknowledging the spatial and temporal nature of precipitation one realizes

the difficulty in properly sampling an area of interest using Rain Gauges alone.
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5.2.1 Sampling with both Rain Gauges and Lines

The true beauty in the Papoulis Generalized Sampling Expansion is its ability to treat any type
of sampling functional as long as they are linear (or linear time/space invariant). If we treat the
rain gauge as a simple delta function we indeed yield a LSI sampling functional.

This enables us to repeat the entire formalism which we suggested above by simply adding
another functional into the GSE phase.

Let us assume that the sampling set which we had is one which is composed of two types of

lines and a rain gauge, as is depicted in Figure 33.

Figure 33 — Rain Gauge Sampling Scheme
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We recall that the Fourier Transform of a shifted delta function is given by —

5(x +d,,y+d, ) ;:{>} ot gAY

In such a case, our sampling functionals are given by —

H, (u,v) _ sin((cos Ou +'sin 6’1\1)) H, (u,v) _ sin((cos O,u +'sin sz))
(cos Gu+sin6v) (cos O,u +sin6,v)
H3 (u’ v) — eijqueijdyv

And as usual, the GSE matrix of the system of equations for such a sampling scheme is given
by—
H,(u,v) H, (u,v) H, (u,v)
Hl(u+cx,v+cy) Hz(u+cx,v+cy) H3(u+cx,v+cy)

H, (u+2CX,V+26‘y) H, (u +20X,v+26y) H, (u+26x,v+2c‘y)

We must ensure that it is non-zero for the proper set of frequencies as required by the Papoulis
GSE.

The problem of an irregular grid stays the same when adding a rain gauge. The only change is
to the phase of determining a distinct set of sampling functionals. However, we ourselves added
the rain gauge, so we are left with a set of distinct lines and our added delta function.

The phase of treating missing samples stays the same as the two suggested procedures in
(3.14) and (3.16). For missing samples along a line, we employ the procedure suggested in
section (3.16) which involves integrating along functionals of which missing samples exist.

For missing samples of rain gauges, we employ the procedure suggested in section (3.14)
which involves no integration but simply constructing a set of linear equations and plugging
them into the entire inverse problem set of linear equations.

We stress that we do not require an entire grid of rain gauges but rather a single rain gauge.
The lack of a grid of rain gauges will be treated within the formalism of missing samples as

previously shown.
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5.3 Coverage of other than Rain

The approach to the covrerage problem and the suggested tool may be generalized to any
phenomenon which is sensitive to the length of the intersecting link and a cloud. We discuss here
a different environmental phenomenon which may find an interest in such a tool.

State of the art fog observation methods include Transmissometers, Satellite systems, Scatter
meters and even Human observers, all of which are expensive solutions.

Preliminary results concerning fog monitoring utilizing commercial microwave systems have
been shown by David et a/ [8]. David applied the Rayleigh approximation in order to relate fog
to attenuation per km-

y=QLWC

where 7/[dB / km] is the attenuation, @ is an attenuation coefficient which is temperature and

frequency dependent and LWC is the liquid water content.

The attenuation coefficient suggested by David is based on the Rayleigh approximation (fog
drops are generally less than 0.01 cm, small with respect to centimetre microwaves) and is given
by —

=xf

Where y is a known constant which depends on the dielectric permittivity of water and f is
the link's frequency.
After the approximations, the resulting equation, relating between the water vapour and the

measured attenuation is given by —

Y = XLy LWC

which implies that we may use the procedure suggested in section 2.1 for the sake of
generating fog maps.

We would like to stress however, that other than rain, fog may be present in heights where the
links may miss it. Hence, this technique isn't fully suited for the covrerage of fog. Snow, Hail

and/or Sleet on the other hand are environmental phenomena which are more suited for this
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approach. Employing this approach requires a proper mathematical relation between the

phenomenon's rate and its attenuation.
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6 Appendix

6.1 Correlation Function of the Sampling Process

In this section we present a method of calculating the spectrum of the random process of

sampling a function with random lines.

6.1.1 Modeling the Sampling Process

We begin with the manner by which we model the sampling process. Similar to deterministic
sampling problem where the sampled function is multiplied by the Dirac comb we must multiply
a function by a Dirac comb but after integration along a line —

?(x,y): i i f,(nAx,mAy)é‘(x—nAx,y—mAy) (6.1)

N=—00 M=—0

The function f, (x, y) is the outcome of the integration along a line realization —

fl(x,y)=Lf f(x.y)dl (6.2)

We parameterize the line by —

xe [—O.SWW cos®, , +nAx+06x,,0.5W,  cosf,  +nAx+ 6xn]
"y =tan@ (x—nAx—6x,)+(mAy+6y,)

n,m

(6.3)

Where W, and 6, are its respective length and angle and Jx,,dy, are random variables

which generate the offset of the line from the regular sampling grid.
Due to the fact that the line function is equal to 1 only along the line and zero otherwise, we

may write -

f(x,y) = i i (”me(xv,y')dslﬁ(x—nAx,y—mAy) (6.4)

n=—00 M=—00 2

R2

w, . .0, . and ox, 0y, arerandom variables.

Our desire is to calculate the autocorrelation function of this sampling process.

We stress that this modeling doesn't consider missing links/samples.
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6.1.2 Choice of the Random Variables Probability Distribution Functions

Enabling the completion of the calculation of the Autocorrelation function requires defining or
choosing the complementary probability distribution functions. Analysing Figure 2 we see that a
choice of a uniform distribution for the link angles seams like a reasonable choice assuming we

are in an urban area —

0.~ U[—ﬂ',ﬂ] (6.5)

However, if a sub-urban or rural area is considered, a more complex functional description
must be employed for the angles' probability distribution function.
A choice of an exponential distribution for the link lengths seams proper assuming we are in

an urban area —

p, (x)=2e"") (6.6)

The parameter W, enables shifting the function in order to set the minimal length with non-

zero probability. Choice of the decay rate parameter 4 may be done by many ways. We chose to
estimate it by considering the maximum likelihood estimation (MLE) of the parameter. We
assume the line lengths are L.I.D.
The MLE of A is then given by —
P(x,| A)= e ")

= P(} | /1) = ﬁ Qe ) /we@(%% )]

A= argmaxP(;c ] /1) = arg max log(P(;c | /1))
A A

. alog(P(}m)) N (i(xi . )] i

oA 1\ &

(6.7)

==

Finally, a choice of a uniform distribution for the link distances is a valid choice assuming we

are considering a small urban cell of links —
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5x,,8y, ~U[-6,6] (6.8)

However, we limit the range of the links distances to be —

Ax Ay
0 <max| —,— 6.9

In order to prevent switches between line sites

6.1.3 The Sampling Process's Autocorrelation Function and Spectrum
Our desire is to calculate the autocorrelation function of the sampling process which we

modelled in the previous section.

—E{f,(x,y)f,(x%—r,y%—a)} (6.10)

Writing this explicitly we yield —

0

{’i i{_[f x y)dl}é(x nAx,y—mAy) ; i[_[f x y)dl]é(x+r nAX,y+0— mAy) =

Zw: i Zw: i(jL f x,y ds”L f x,y ds] x— nAx,y—mAy)5(x+T—n‘Ax,y+U—m‘Ay)}: (6.11)

{i ZOO: imin[Ji!.L f(x y dsﬂL f x,y ds] x— nAx,y—mAy)é(x+r—n'Ax,y+0'—m'Ay)}

n =—00 m =—00 N=—00 M=

For the sake of simplicity we define —

E( j j L f(x.y)ds ij f(x, y')ds} 24 (6.12)

Adopting the suggestions for the probability distribution functions which were suggested in

the previous section enables calculating the values of 4 . . -
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J% J % i Ao~ ) li i j Lﬂvmf(x',y')dsjd@de&deo ) | |
Iif n#n or m#m
L L eammof L L
J 55‘,51 Ae J; Py gLf (x,y)dstedeaxdajv | _
I 2
] % J % [ e 0| i f[z.r (x',y')dsj d@de&xdav] if n=n and m=m (6.13)
5.8, "W Y B2

4 jz [J.ﬂei(WW””) j f(x',y')dde]o jieiﬂ(W*WM) I f(x',y')dde if n#zn or m#m
W Ty w o

n,m

2
4 J‘ieﬂ(WWM)[ j f(x',y')ds] aw if n=n and m=m
rn.m

The definition of the integration area T',, simplifies the description. The integration area is
the result of the integration of f (x, y) due to the uniformity of the angle and distances. The

angle is uniform between —z and 7 and the distances are uniform between —¢ and o .

This gives us an integration area which is the product of a circle which is shifter within a

rectangle with an edge which length is equal to o . This area is depicted in the figure below —

Figure 34 — The definition of the integration area T', ,

We may write the autocorrelation function as —
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R=E{f, (%), (x+w+ff)} -

. {p” " .f(x',y*)ds}zdﬂ [2 52] {J Ae J /(¥ y)dvdW} {I MW”‘”F{’vf(x‘,y‘)ddeﬂ-

ttttttttttt

x nAx,y— mAy)ﬁ(erT—nAx,erO'—mAy)

By defining the function I'(n,m) -

w

2
['(n,m)= (2252 j J'/ie%(W*WM) j f(x',y')dde
rn,m

We may write —

llllll

=E{f; (x2) £ (x+7, y+a)}
i i i i{ 5(x—nAx,y—mAy)5(x+r—n‘Ax,y+a—m'Ay)}+
ni i 2;52 I/‘iew(w W, ){ I f(x y)ds} dW}—rz( ):Ioé‘(x nAx,y —mAy)S(x+7-nAx,y+o mAy)}

Manipulating the delta functions gives us —

R=E{f,(xy)f (x+7.y+0)}=

0 0

§: ; Z ;Zw:{lﬂ(n,m)-1“(11‘,m')o5(1'_(”'_”)Ax"j_(”"_m)Ay)}Jr

ZZ{L@ {I ﬂe“”“LI f<xxy')ds} dw}r%n,m)}a(w)}

We now notice that the second term has only a DC coefficient.

We write the sampling process as —

Where —

R=E{f,(xy)/, (x+r.y+0)}=
ngmngwingw{r(n,m).F(n',m‘)05(r—(n'—n)Ax,O'—(m'—m)Ay)}+DC-§(T,G)
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(6.15)

(6.16)

(6.17)

(6.18)



=—00 M=—00 w

n,

> {{ @{J e ]()H 619

This shows us that the the equation above is simply a process of sampling a different function

F(n, m) with a different DC value. This means that we may easily determine when aliasing will

occur by considering the spectrum of I" (n, m) with respect to the sampling rate.
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