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Abstract 
 

Signals received by microwave systems are inherently path averages since they are the result 

of an integrated sample of the signal along the microwave's path. A novel method, suggested by 

Messer et al at 2006 followed by Leijnse et al at 2007, involving existing commercial wireless 

networks (CWN) suggested the usage of the backhaul communication links for the sake of 

environmental monitoring. Put simply, Messer et al suggested using existing cellular networks' 

equipment for the sake of meteorological monitoring of rainfall.  

In the CWN system as suggested by Messer et al the links' geometry is for any means 

arbitrary. Location of communication links, as performed by network technicians, is an intricate 

task. Execution of this task usually balances between the attempt to minimize the number of calls 

which will be lost due to a lack of reception while maximizing the distance between links in an 

attempt to minimize the number of links (and by such minimize network establishment costs). 

Such an optimization target unsurprisingly generates a completely undefined geometry of a 

spatial distribution of links. 

In this thesis I treat two central problems which arise from the arbitrary tolopogy which 

desribes the links' distribution. The first is the question of coverage. I answer the question 

regarding under what circumstances is a rain cloud detectable. By applying our approach to the 

coverage problem we are able to generate coverage maps which depict the exact coverage of rain 

events in Israel, when employing the newly suggested rain fall monitoring system. 

The second answer which I attempt to answer is the question of reconstructability. If one is to 

reconstruct the rain map from the samples of added attenuation, it is first to examine whether the 

geometry of links enables so. I address the issue of sampling a general two dimensional function, 

an image perhaps, by collecting the values of its projections along lines. By projections I mean 

the sum or integration of its values along a line. I do not impose any geometrical/topographical 

constraints on the nature of the lines. The lines may differ one from another by its angle, length 

and the distances between them may be uneven. 

Our contribution is a procedure for determining whether a given links realization yields a 

reconstructable function and if so, what is the maximal non-aliased spatial frequency which is 

properly sampled. 

I apply our solutions to the coverage and reconstructability on actual links of the Israeli 

Cellular Service Provider Cellcom. 
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1 Introduction 

1.1 Problem Motivation & Background 

Recently a new paradigm has pervaded the discipline of environmental monitoring. Using 

microwave attenuation measurements for the reconstruction of rainfall fields, which was initially 

suggested by Giuli et al [15] [16] The latter suggested a proprietary design of microwave links 

with a specifically chosen geometry which was designed to ensure proper reconstruction of rain 

fields. 

Though Giuli's proposition dates back about 20 years it seamed not to gain rise. This is most 

probably due to the price of deploying such a microwave based system. A project named 

MANTISSA [17], or Microwave Attenuation as a New Tool for Improving Stormwater 

Supervision Administration, set out to test the feasibility of using microwave signals to estimate 

rainfall estimates. 

These signals are inherently path averages since they are the result of an integrated sample of 

the signal along the microwave's path. MANTISSA aspired to use these averaged rainfall 

estimates as a complement to radar data and by such improve the available input data to 

hydrological models for forecasting urban and rural drainage systems' response. 

A novel method, suggested by Messer et al  [21] at 2006 followed by Leijnse et al  [18]  at 

2007, involving existing commercial wireless networks (CWN) suggested the usage of the 

backhaul communication links for the sake of environmental monitoring. Put simply, Messer et 

al suggested using existing cellular networks' equipment for the sake of meteorological 

monitoring of rainfall. This suggestion alleviated the problem of the costs of the microwave 

based systems by using the existing links, which changed their high deployment price to zero. 

This constituted the first major step towards the new approach for Environmental Monitoring. 

Evidently, the received signal strength at which each antenna receives its pair's transmitted 

signal may be stored. Moreover, it is indeed often stored and kept for offline inspection. Messer 

et al have proposed the usage of these cellular networks' built-in monitoring facilities. Being a 

"widely distributed observation network, operating in real-time with minimum supervision and 

without additional cost"  [21] motivated the attempt to use this data from the CWN with the 

theoretical justification for such attempts being a power law which related the signal attenuation 

to the rain rate  [23]. The power law relating the attenuation to the rain rate was shown to be an 
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approximation which holds in convective rains and in communication systems operating in mid 

range frequencies (above 1GHz and below the optical range). The exact relation between the 

attenuation and rain rate is given by a series relation in the frequency and the rain rate –  

 

'' /

2

1b n n q

n

n

A a R c f R β
∞

=

 
= + 

 
∑  ( 1.1) 

 

where ,nc β  and q  are constants which are frequency, temperature and DSD (drop size 

distribution) dependant. A  is the logarithmic attenuation per km [ ]/A dB km  and [ ]/R mm hr is 

the rain rate. Later, Olsen et al  [23] also showed that using the approximation of –  

 

bA aR=   (1.2) 

 

is a good one and evaluated its usage with experimental results. The A R−  relation is often 

considered as a completely linear one, approximating the power coefficient b  to 1, when 

operating at around 1cm wavelengths. And indeed, in the dedicated microwave links which were 

suggested by Giuli et al  [15] [16] the frequencies were chosen to ensure a linear A R−  relation. 

If we were to properly measure the rain induced attenuation we would apply a relation which 

integrates the rain along the path which connects between two links, rather than assuming that 

the rain is constant along such a line. This implicitly suggests that the rain along such a path isn't 

necessarily constant. This is shown in the relation below –  

 

( )b
A a R x dx= ∫   (1.3) 

 

In the system devised by Giuli et al  [15] the geometry of links was designed to attempt to yield 

a proper reconstruction of rain maps inside an area of 400km2. In the CWN system as suggested 

by Messer et al the links geometry was for any means arbitrary. Location of communication 

links, as performed by network technicians, is an intricate task. Execution of this task usually 

balances between the attempt to minimize the number of calls which will be lost due to a lack of 

reception while maximizing the distance between links in attempt to minimize the number of 

links (and by such minimize network establishment costs). Such an optimization target 
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unsurprisingly generates a completely undefined geometry of a spatial distribution of links. 

Figure 1 depicts the Giuli link system geometry compared with the link distribution in Israel. 

 

 

Figure 1 – Wireless Cellular Links in Israel vs. the Giuli monitoring system  [15] 

 

1.2 Problem Statement 

The measurements of the attenuation of the microwave signal are the result of the path-

integrated rainfall  [3] [4] along the wireless links. Each pair of antennas communicates one with 

the other and experiences an added attenuation in case of rain fall. If one is to reconstruct the rain 

map from the samples of added attenuation, it is first to examine whether the geometry of 

antennas enables so. 

I address the issue of sampling a two dimensional function, an image perhaps, by collecting 

the values of its projections along lines. By projections I mean the sum or integration of its 

values along the lines or links. I do not impose any geometrical constraints on the nature of the 

lines. The lines may differ one from another by its angle, length and the distances between them 

may be uneven. Our intent is to answer the question regarding the ability to reconstruct a 

function from such a sampling scheme. 
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We broaden the theoretical discussion by applying the suggested method on a practical 

example, the problem of reconstructing rain-fall maps by commercial wireless communication 

networks  [18] [21] [22] [31]. 

I also discuss a method for generating covrerage. These are maps which present the minimal 

detectable rain rate given a predetermined set of links operating at a known frequency.  

1.3 The "ature of the Links' Topology 

The motivation to the problem of sampling a two dimensional function by integrations along 

lines with arbitrary geometry is mainly due to the newly suggested method for environmental 

monitoring  [21] [18]. 

In this section I present an insight into what typical sampling sets appear like. 

For this purpose, I analysed roughly 8400 links of three Israeli cellular service providers, namely 

Cellcom, Pelephone and Orange. 

I plot the histograms of the links' lengths, angles and distance one from the other for Israel, 

having divided it into four quarters, from North to South. I also analyse the histogram of the 

entire set of links. 

The centre of Figure 2 depicts the Israeli map of links. On the left hand side of the map, the 

histograms of the link distances one from the other are depicted for each quarter of Israel (e.g. 

the upper left most histogram is the histogram of distances of the upper quarter of Israel). On the 

right hand side of the map, the histograms of the link angles and lengths are depicted for each 

quarter of Israel.  

The histograms emphasize the fact that urban, sub-urban and rural areas have different 

sampling sets, not only in terms of the link densities but also in terms of the nature of lines (their 

typical lengths and angles). One may notice that the maximal lengths, which may be found by 

considering the maximal value in the histogram of link lengths on the entirety of the data, 

appears only in the most rural part of Israel. These parts are the southern parts of Israel. The 

histogram of angles shows that more urban areas display a more uniform distribution of angles 

compared to areas which link's density isn't as high. 

The definition of the distance between links is tough to state because the grid of links which I 

have in hand is far from regular. Hence, the distance between links was chosen to be the shortest 

distance between two links. The distance presented is in units of longitude and latitude. The 

histograms below show that if we consider a small area and discard the values in the histogram 
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with low probability, we may consider this as a relatively uniform distribution. However, if one 

requires considering the low probability tail of the distribution, a fast decaying probability 

density function must be used. 

 
 

Figure 2 – The Link Distribution in Israel; Angles, Lengths and Locations 

 

1.4 Sampling Literature Survey 

The reconstruction of a sampled signal, as proved by Whittaker, Kotelnikov and Nyquist and 

which was discussed by Claude E. Shannon  [27] has been well studied and is classically 

considered to be one of the most cardinal results on the subject of sampling. The Nyquist 

theorem states the terms under witch a perfect reconstruction of a band limited function can by 
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reconstructed from its point samples. Moreover, the Nyquist theorem states exactly how to 

reconstruct the sampled function by presenting the exact interpolation kernel, which is no other 

than the sinc kernel. 

Many variances of the sampling problem have been introduced since. Many of such variances 

have been motivated by real-life applications. E.g., the problem of sampling in the presence of 

Jitter is a common case. Any realistic sampling device cannot be of infinite sample rate 

precision. Hence, the sample instance is usually presented as a delta function with probability 

density function of deviating from its nominal location  [5]. Jitter is known to be equivalent to a 

phase noise in the frequency domain which is the reason it creates a spread of the spectrum 

around the nominal one, which is the reasoning for suggesting a linear band pass filtering for the 

spread mitigation. 

An interesting perspective on the problem of Jitter is to consider it as a problem of irregular 

sampling. In other words, different than the sampling manner which was discussed in the paper 

by Shannon [27], we may consider the problem of sampling with an other-than constant grid. 

Margolis and Eldar discussed the problem of Nonuniform Sampling of Periodic Bandlimited 

Signals [20]. They treated the problem of reconstructing a periodic band limited signal from a 

finite number of its non uniform samples. By extending the samples periodically, and assuming 

that the underlying continuous time signal is band limited, they showed a simple way to deal 

with a reconstruction from a finite amount of samples on an irregular grid. They also presented 

two algorithms for reconstructing such a periodic band limited signal (for an even or odd amount 

of samples). Feuer and Goodwin  [13] addressed the problem of the reconstruction of a 

multidimensional signal reconstruction sampled on an irregular grid. However, typical solutions 

usually suggest a linear filtering approach for this problem (as stated above). Feuer and Goodwin 

presented an interpolation identity which establishes the equivalence of two multidimensional 

processing operations, one which uses continuous domain filters, whereas the other uses discrete 

processing. An excellent survey discussing non uniform Sampling and Reconstruction in Shift-

Invariant Spaces is given by Aldroubi and Grochenig  [1] in which they discuss modern 

techniques and provide a unified framework for uniform and non uniform sampling and 

reconstruction in shift-invariant spaces by bringing together wavelet theory , frame theory and 

sampling. 

Another well studied problem is the problem of sampling via a generalized function. In other 

words, one may want to sample with other than the Dirac comb point process. A pragmatic 
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motivator for this need is the fact that any real life device suffers from inertia and simply cannot 

properly evaluate the point value of a function. Hence, many papers discuss the problem of 

sampling via a local average, which is the manifestation of inertia. E.g., Sun  [28]  discusses the 

Non-Uniform Average Sampling and Reconstruction of band limited functions which he terms 

"signals with finite rate of innovation". Sun and Zhou  [29] discussed the Reconstruction of 

Band-Limited Signals from Local Averages and showed that the reconstruction of such band-

limited signals from local averages with symmetric averaging functions have an explicit error 

bound. Considering the "point sampling" as a limit case of the average sampling they showed 

aliasing error bounds for such average sampling. The problem of sampling with a general 

functional may be expanded to many directions. However, the generalization of the problem to 

any linear functional was beautifully treated by Papoulis  [24]. Papoulis showed that a simple 

evaluation of a determinant can be applied for the sake of determining whether the sampling 

functionals are proper for the sake of sampling a band limited function. The Papoulis 

Generalized Sampling Expansion (GSE) is used as a central tool in our work. 

Yet another interesting aspect of the sampling problem is the ability to cope with missing 

samples. The simplest case of treatment of missing samples was treated by many. An example of 

such is given by Ferreira  [12]. An extension to the problem of coping with missing samples in 

the case of point values and point derivatives via the Papoulis Generalized Sampling Expansion 

was proposed by Dorabella and Ferreira  [10]. The conceptual approach to this problem is the 

inspiration to our use of the missing samples problem for the case of the arbitrary line sampling 

case. 

An excellent survey discussing a multitude of sampling problems since the innovative paper 

which was published by Shannon was written by Unser and is given in  [30]. 

The papers above show the vast interest in sampling problems. However, to the best of our 

knowledge, the problem of sampling via local averages along a one-dimensional line in the case 

of a two-dimensional function (an image) where the lines are spread arbitrarily (and non 

uniformly) hasn't been treated. 

An innovative paper by Candes and Tao  [6] discusses Near Optimal Signal Recovery From 

Random Projections. At first this paper seamed like the exact application to our problem of 

sampling via a local projection. Their paper showed that if the objects of interest are sparse in a 

fixed basis, or compressible, then it is possible to reconstruct the sampled function to within a 

very high accuracy from a small number of random measurements by solving a simple linear 
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program. However, the central assumption in their problem is the presence of sparsity in a given 

basis. We wouldn't want to assume so, due to the highly irreagular spectral nature of rain. In case 

a sparse basis would be a probable assumption, then any signal made with a sparse frequency 

representation may be recovered by convex programming from almost every set of frequencies 

and the reconstruction is nearly optimal in the sense that the method will succeed with 

probability which approaches unity. 

Another paper which seamed highly related is a work by Leneman  [19] which discusses the 

correlation function and power spectrum of randomly shaped pulse trains. However, when 

attempting to generalize this treatment to the case of the two dimensional function with varying 

angles and lengths the complexity becomes clear. In our work I extend this result and show the 

correlation function of randomly placed and rotated lines/rectangles placed on a two dimensional 

space. 

Due to the fact that many medical applications sample via projections along lines, many 

treatments of such sampling scenarios may be found in the scientific literature. Beginning with 

the prominent work by Radon  [25] which showed the ability to properly reconstruct a sampled 

two-dimensional function from Fourier Slices. In medical applications such as a CT imager, an 

image is captured by the local cross sections of an object. The Radon transform represents the 

scattering data captured by the tomographic device and the Inverse Radon transform may be used 

for the purpose of reconstructing the volume density function. The crucial difference between 

this tomographic application and ours is the fact that the cross sections are well organized in 

space and by such ease the modelling and enable the relation to the Fourier Slices. As stated 

previously, our sampling case employs projections (or Slices) along lines with arbitrary lengths, 

angles or locations. A heuristic approach to the reconstruction of such a sampled image was 

discussed by Marchi et al  [9] where a kernel based Image reconstruction from scattered radon 

data was presented. However, no thorough discussion regarding the precision at which the 

reconstruction is achieved is discussed. 

In this work I present a procedure which input is a set of lines of arbitrary lengths, angles and 

locations and output is a binary answer regarding the ability to reconstruct a band limited 

function from such a set of lines. This solution is formalized as a deterministic one as the line 

coordinates are treated explicitly and no underlying probability density function describing the 

lines characteristics are required. 
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In an extension to this result I also show a derivation of the correlation function of a process 

which describes sampling with randomly placed and rotated lines/rectangles placed on a two 

dimensional space. 

I apply the set of tools which I developed hereby on the problem of reconstructing rain maps 

from a set of links which represent projections along arbitrary lines. 

1.5 Mathematical Preliminaries 

In the following section I mention some equations and theorems which I will often use along 

this dissertation 

1.5.1 The Dirac Comb and the Poisson Summation 

The Dirac Comb and its Fourier transform is given by –  

( ) 1 2

n n

n
t nT u

T T

π
δ δ

∞ ∞

=−∞ =−∞

   − = −   
  

∑ ∑F  ( 1.4) 

 

The Poisson Summation is given by –  

( ) 2 /1 jnt T

n n

t nT e
T

πδ
∞ ∞

=−∞ =−∞

− =∑ ∑  ( 1.5) 

 

Another form of the Poisson Summation is given by –  

 

( ) ( )1
2

2n n

f n F nπ
π

∞ ∞

=−∞ =−∞

=∑ ∑  ( 1.6) 

 

1.5.2 The Whittaker-Shannon-Kotelnikov Theorem 

The sampling theorem, more commonly referred to as the Nyquist sampling theorem is a 

fundamental result in the field of information and sampling theory. 

The Whittaker-Shannon theorem states that if a continuous time function ( )f t contains no 

frequencies higher than mω it may be completely determined by its samples spaced no less than 

1/ 2 mu  apart. 

We make a use of the Poisson summation formula and prove the Nyquist sampling theorem –  
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( ) ( ) ( )
n

S

n

f t f t t nTδ
=∞

=−∞

= −∑  ( 1.7) 

 

We apply a Fourier Transform to both sides of the equation –  

 

( ){ } ( ) ( ) ( ) ( ) ( )1 1n n n

S s s

n n n

f t f t t nT F u u nu F u nu
T T

δ δ
=∞ =∞ =∞

=−∞ =−∞ =−∞

   
= − = ∗ − = −   

   
∑ ∑ ∑F F  ( 1.8) 

 

We assume the signal is band limited with a maximal frequency of 
mu . Hence, we must 

sample at a sample rate 2 m su u≤ . 

 

1.5.3 The Papoulis Generalized Sampling Expansion 

Let us consider ( )f t  as a σ  band limited function if –  

2f L∈  and ( ) 0F u u σ= ≥  ( 1.9) 

 

The Whittaker-Shannon sampling theorem states that –  

( ) ( ) ( )sinc
n

f t f nT t nT
T

π∞

=−∞

 = − 
 

∑  ( 1.10) 

 

The Papoulis Generalized Sampling Expansion states when ( )f t  can be expressed in terms of 

the samples ( )kg nT  of m  linear functionals ( )kg t  of ( )f t  each of which samples at a slower 

rate –  

2 /gT mT mπ σ= =      2 /c mσ=  ( 1.11) 

 

We stress that linear functionals are in essence LTI systems ( ) [ ]1, ,kH u k m∈ … . 

These systems are all fed by the σ  band limited function ( )f t  
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Figure 3 – The Papoulis Generalized Sampling Expansion 

 

1.5.3.1 Proof for 1D functions 

We now attempt to show that ( )f t  can be expressed in terms of the samples ( )kg nT  of m  

linear functionals ( )kg t  of ( )f t each of which samples at a slower rate. We do so by following 

the result given by  [24] 

2 /gT mT mπ σ= =      2 /c mσ=  ( 1.12) 

 

We stress that linear functionals are in essence LTI systems, hence the motivation to show so. 

Let us assume we are given m  linear systems with transfer functions –  

( ) [ ]1, ,kH u k m∈ …  ( 1.13) 

 

These systems are all fed by the σ  band limited function ( )f t  

Each ( )kg t is given by –  

( ) ( ) ( ) jut

k kg t F u H u e du

σ

σ−

= ∫  ( 1.14) 

 

We shall attempt to express ( )f t  in terms of the samples ( )k gg nT  of these functions. i.e. – 

we wish to find ( )ky t  such that –  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
1

m

g g m g m g k g k g

n n k

f t g nT y t nT g nT y t nT g nT y t nT
∞ ∞

=−∞ =−∞ =

 = − + + − = − ∑ ∑ ∑⋯  ( 1.15) 
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We begin by forming the following set of equations –  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( )

1 1

1 1

2
1 1

1

1

, , 1

, ,

2 , 2 ,

1 , 1 ,

m m

jct

m m

j ct

m m

j m ct

m m m

H u Y u t H u Y u t

H u c Y u t H u c Y u t e

H u c Y u t H u c Y u t e

H u m c Y u t H u m c Y u t e
−

+ + =

+ + + + =

+ + + + =

+ − + + + − =

⋯

⋯

⋯

⋮

⋯

 ( 1.16) 

 

where –  

( ) ( )1
,

c

jut

k ky t Y u t e du
c

σ

σ

− +

−

= ∫  ( 1.17) 

 

The coefficients of the linear system of equations ( 1.16) ( )kH u lc+  are independent of t , and 

the right side consists of periodic functions of t  with a period of 
gT  (note that 

( ) 2glc t T lct lπ+ = + ). Hence, the solutions ( ),kY u t  must be periodic –  

( ) ( ), ,
gk kY u t Y u t T= +  ( 1.18) 

 

Using ( 1.17) and ( 1.18) we may write –  

( ) ( ) ( ) ( )1 1
, ,g g

c c
ju t nT jnT ujut

k g k g ky t nT Y u t nT e du Y u t e e du
c c

σ σ

σ σ

− + − +
− −

− −

− = − =∫ ∫  ( 1.19) 

 

We notice that ( 1.19) implies that ( )k gy t nT−  is the thn  Fourier series coefficient of the 

function ( ), jut

kY u t e  in the interval ( ), cσ σ− − + . Hence –  

( ) ( ) ( ), ,gjnT ujut

k k g

n

Y u t e y t nT e u cσ σ
∞

=−∞

= − ∈ − − +∑  ( 1.20) 

 

By multiplying the first equation in ( 1.16) by jute we have –  

( ) ( ) ( ) ( )1 1 , ,jut jut jut

m mH u e Y u t H u e Y u t e+ + =⋯  ( 1.21) 
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Plugging ( 1.20) into ( 1.21) we yield –  

( ) ( ) ( ) ( )1 1
g gjnT u jnT u jut

g m m g

n n

H u y t nT e H u y t nT e e
∞ ∞

=−∞ =−∞

− + + − =∑ ∑⋯  ( 1.22) 

 

which is true for every ( ),u cσ σ∈ − + . 

We now multiply the second equation in ( 1.16) by jute  and similarly yield -  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

g gjnT u c jnT u c j u c t

g m m g

n n

H u c y t nT e H u c y t nT e e
∞ ∞

+ + +

=−∞ =−∞

+ − + + + − =∑ ∑⋯  ( 1.23) 

 

Which is also true for every ( ) ( ),u c cσ σ+ ∈ − − + . However, due to the fact that 

( )g gjnT u c jnT u
e e

+ =  we may write ( 1.23) as –  

( ) ( ) ( ) ( )1 1
g gjnT u jnT u jut

g m m g

n n

H u y t nT e H u y t nT e e
∞ ∞

=−∞ =−∞

− + + − =∑ ∑⋯  ( 1.24) 

 

which is also true for every ( ), 2c cω σ σ∈ − + + . 

In the same manner we may prove that ( 1.22) holds for every ( ),ω σ σ∈ − . 

Finally, we multiply ( 1.22) by ( )F u  and integrate according to u . In other words we calculate 

the inverse Fourier transform -  

( ) ( ) ( ) ( ) ( ) ( )1 1
g gjnT u jnT u jut

g m m g

n n

F u H u y t nT e H u y t nT e F u e

σ σ

σ σ

∞ ∞

=−∞ =−∞− −

 
− + + − = 

 
∑ ∑∫ ∫⋯  ( 1.25) 

 

By using ( 1.14) we may write -  

( ) ( ) ( ) ( ) ( )1 1g g m g m g

n n

f t g nT y t nT g nT y t nT
∞ ∞

=−∞ =−∞

= − + + −∑ ∑⋯  ( 1.26) 

 

which is what we wanted to prove. 

We stress that the determinant of the linear system in ( 1.16) must be different than zero in 

order for the sampled signal to be able to be reconstructed for the set of frequencies 

( ),u cσ σ∈ − + . 

 



Page 23 of 101 

 

 

1.5.3.2 The 1D Papoulis Generalized Sampling Expansion – An Example 

Let us examine an example of a sampling scheme which uses up to first order derivatives. This 

implies that the sampling scheme may be illustrated as –  

 

 

 

Figure 4 – Sampling with up to first order derivatives 

 

The sampling scheme defines –  

( ) ( )

( ) ( ) ( ) ( )
1 2

1 2

1

4 /

'

g

H u H u ju

g t f t g t f t

T cπ σ σ

= =

= =

= =

 ( 1.27) 

 

From the theorem above, we deduce that ( )f t  can be expressed in terms of the samples of 

( )1,2g t . 

The set of linear equations gives us –  

( ) ( )
( ) ( ) ( )

1 1

1 1

, , 1

, , j t

Y u t juY u t

Y u t j u Y u t e σσ

+ =

+ + =
 ( 1.28) 

 

The determinant of the linear system is given by -  

( )
1

0
1

ju
j

j u
σ

σ
= ≠

+
 ( 1.29) 

 

The solution to this set of equations is given by – 

( ) ( ) ( ) ( )1 2, 1 1 , 1j t j tu
Y u t e Y u t e

j

σ σ

σ σ
1

= − − = −  ( 1.30) 

 

The Inverse Fourier Transform of these interpolation functions are given by -  
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( ) ( ) ( ) ( )2 2

1 22 2 2

4sin / 2 4sin / 2
, ,

t t
y u t y u t

t t

σ σ
σ σ

= =  ( 1.31) 

 

Which gives us the interpolation formula –  

( )

2 2

'

2
22

4 4
4sin / 2 4sin / 2

4 4

44n

n n
t t

n n
f t f f

nn tt

π π
σ σ

σ σπ π
πσ σπ σσ σσ

∞

=−∞

      − −               = +         −−      

∑  ( 1.32) 

 

1.5.3.3 Proof for 2D signals 

Let us define ( ),f x y  as a ( ),x yσ σ  band limited function if   

2f L∈  and ( ), 0 x yF u v u or vσ σ= ≥ ≥  ( 1.33) 

 

We denote the Fourier Transform of ( ),f x y  by ( ),F u v . 

We now attempt to show that ( ),f x y  can be expressed in terms of the samples 

( ),x y

k g gg nT pT  of m  2D linear functionals ( ),kg x y  of ( ),f x y each of which samples at a 

slower rate –  

2 /

2 /

x

g x

y

g y

T mT m

T mT m

π σ

π σ

= =

= =
     

2 /

2 /
x x

y y

c m

c m

σ

σ

=

=
 ( 1.34) 

 

Let us assume we are given m  linear systems with transfer functions –  

( ) [ ], 1, ,kH u v k m∈ …  ( 1.35) 

 

These systems are all fed by the ( ),x yσ σ  band limited function ( ),f x y  

Each ( ),kg x y is given by –  

( ) ( ) ( ), , ,
yx

x y

jux jvy

k kg x y F u v H u v e e dudv

σσ

σ σ− −

= ∫ ∫  ( 1.36) 
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We shall attempt to express ( ),f x y  in terms of the samples ( ),x y

k g gg nT pT  of these functions. 

i.e. – we wish to find ( ),ky x y  such that –  

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1

1

, , , , ,

, ,

x y x y x y x y

g g g g m g g m g g

n p

m
x y x y

k g g k g g

n p k

f x y g nT pT y x nT y pT g nT pT y x nT y pT

g nT pT y x nT y pT

∞ ∞

=−∞ =−∞

∞ ∞

=−∞ =−∞ =

 = − − + + − − = 

= − −

∑ ∑

∑ ∑ ∑

⋯

 ( 1.37) 

 

We begin by forming the following set of equations –  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( )
1

1 1

1 1

1 1

22

1 , 1

1 , 1

, , , , , , , , 1

, , , , , , , ,

2 , 2 , , , 2 , 2 , , ,

, , ,

, ,

m x y

m x y m

yx

yx

m m

jc yjc x

m m

m m

x y x y

j c yj c x

x y x y

H u m c v m c Y

H u m c v m c Y

H u v Y u v x y H u v Y u v x y

H u c v c Y u v x y H u c v c Y u v x y e e

H u c v c Y u v x y H u c v c Y u v x y

u v x y

u v

e e

+ − + − + +

+ − + −

+ + =

+ + + + + + =

+ + + + + + =

⋯

⋯

⋯

⋯

⋮

( ) ( ) ( )11
, yx

j c yj c x mm
x y e e

−−=

 ( 1.38) 

 

Where –  

( ) ( )1
, , , ,

y yx x

x y

cc

jux jvy

k k

x y

y x y Y u v x y e e dudv
c c

σσ

σ σ

− +− +

− −

= ∫ ∫  ( 1.39) 

 

The coefficients of the linear system of equations ( 1.39) ( ),k x yH u lc v lc+ +  are independent 

of ,x y , and the right side consists of periodic functions of ,x y  with a period of x

gT and y

gT . 

Hence, the solutions ( ), , ,kY u v x y  must be periodic –  

( ) ( ) ( ) ( ), , , , , , , , , , , ,x y x y

k k g k g k g gY u v x y Y u v x T y Y u v x y T Y u v x T y T= + = + = + +  ( 1.40) 

 

Using ( 1.39) and ( 1.40) we may write –  

( ) ( ) ( ) ( )

( )

1
, , , ,

1
, , ,

y yx x x y
g g

x y

y yx x
x y

g g

x y

cc
ju x nT jv y pTx y x y

k g g k g g

x y

cc

jnT u jpT vjux jvy

k

x y

y x nT y pT Y u v x nT y pT e e dudv
c c

Y u v x y e e e e dudv
c c

σσ

σ σ

σσ

σ σ

− +− +
− −

− −

− +− +
− −

− −

− − = − − =

=

∫ ∫

∫ ∫
 ( 1.41) 
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We notice that ( 1.41) implies that ( ),k g gy x nT y pT− −  is the ,th thn p  Fourier series coefficient 

of the function ( ), , , jux jvy

kY u v x y e e  in the interval ( ) ( ), ,x x x y y yc cσ σ σ σ− − + × − − + . Hence –  

( ) ( )

( ) ( ) ( )

, , , ,

, , ,

x y
g gjnT u jpT vjux jvy x y

k k g g

n p

x x x y y y

Y u v x y e e y x nT y pT e e

u v c cσ σ σ σ

∞ ∞

=−∞ =−∞

= − −

∈ − − + × − − +

∑ ∑
 ( 1.42) 

 

By multiplying the first equation in ( 1.39) by jux jvye e we have –  

( ) ( ) ( ) ( )1 1, , , , , , , ,
m m

jux jvy jux jvy jux jvy
H u v Y u v x y H u v Y u v x ye e e e e e+ + =⋯  ( 1.43) 

 

Plugging ( 1.42) into ( 1.43) we yield –  

( ) ( )

( ) ( )

1 1, ,

, ,

x y
g g

x y
g g

jnT u jpT vx y

g g

n p

jnT u jpT vx y jux jvy

m m g g

n p

H u v y x nT y pT e e

H u v y x nT y pT e e e e

∞ ∞

=−∞ =−∞

∞ ∞

=−∞ =−∞

− − +

+ − − =

∑ ∑

∑ ∑

⋯

 ( 1.44) 

 

which is true for every ( ) ( ) ( ), , ,x x x y y yu v c cσ σ σ σ∈ − − + × − − + . 

We now multiply the second equation in ( 1.38) by jux jvye e  and similarly yield -  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1, ,

, ,

yx
g yg x

yx
g y yg x x

jpT v cjnT u cx y

x y g g

n p

jpT v c j v c yjnT u c j u c xx y

m x y m g g

n p

H u c v c y x nT y pT e e

H u c v c y x nT y pT e e e e

∞ ∞
++

=−∞ =−∞

∞ ∞
+ ++ +

=−∞ =−∞

+ + − − +

+ + + − − =

∑ ∑

∑ ∑

⋯

 ( 1.45) 

 

Which is also true for every ( ) ( ) ( ), , ,x x x y y yu v c cσ σ σ σ∈ − − + × − − + . However, due to the fact 

that ( ) ( )yx x y
g yg x g g

jpT v cjnT u c jnT u jpT v
e e e e

++ =  we may write ( 1.45) as –  

( ) ( )

( ) ( )

1 1, ,

, ,

x y
g g

x y
g g

jnT u jpT vx y

g g

n p

jnT u jpT vx y jux jvy

m m g g

n p

H u v y x nT y pT e e

H u v y x nT y pT e e e e

∞ ∞

=−∞ =−∞

∞ ∞

=−∞ =−∞

− − +

+ − − =

∑ ∑

∑ ∑

⋯

 ( 1.46) 
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which is also true for every ( ) ( ) ( ), , 2 , 2x x x x y y y yu v c c c cσ σ σ σ∈ − + − + × − + − + . 

In the same manner we may prove that ( 1.44) holds for every ( ) ( ) ( ), , ,x x y yu v σ σ σ σ∈ − × − . 

Note that in order to tile the entire plane we must examine some extra equations, which do not 

appear in ( 1.38), of the form –  

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1, ,

, ,

x y
g x g

x y
g x g x

jnT u c jpT vx y

x g g

n p

jnT u c jpT v j u c xx y jvy

m x m g g

n p

H u c v y x nT y pT e e

H u c v y x nT y pT e e e e

∞ ∞
+

=−∞ =−∞

∞ ∞
+ +

=−∞ =−∞

+ − − +

+ + − − =

∑ ∑

∑ ∑

⋯

 ( 1.47) 

 

which, by the same reasoning is equal to –  

( ) ( )

( ) ( )

1 1, ,

, ,

x y
g g

x y
g g

jnT u jpT vx y

g g

n p

jnT u jpT vx y jux jvy

m m g g

n p

H u v y x nT y pT e e

H u v y x nT y pT e e e e

∞ ∞

=−∞ =−∞

∞ ∞

=−∞ =−∞

− − +

+ − − =

∑ ∑

∑ ∑

⋯

 ( 1.48) 

which is true for every ( ) ( ) ( ), , 2 ,x x x x y y yu v c c cσ σ σ σ∈ − + − + × − − + . 

Finally, we multiply by ( ),F u v  and integrate according to ,u v . In other words we calculate the 

inverse Fourier transform -  

( )
( ) ( )

( ) ( )

( )

1 1, ,

,

,

,

x y
g g

yx

x y
g gx y

yx

x y

jnT u jpT vx y

g g

n p

jnT u jpT vx y

m m g g

n p

jux jvy

H u v y x nT y pT e e

F u v

H y x nT y pT e e

F u v e e dudv

σσ

σ σ

σσ

σ σ

ω

∞ ∞

=−∞ =−∞

∞ ∞
− −

=−∞ =−∞

− −

 
− − + + 

  =
 

+ − − 
 

=

∑ ∑
∫ ∫

∑ ∑

∫ ∫

⋯

 ( 1.49) 

 

By using ( 1.36) we may write -  

( ) ( ) ( )

( ) ( )

1 1, , ,

, ,

x y x y

g g g g

n

x y x y

m g g m g g

n

f x y g nT pT y x nT y pT

g nT pT y x nT y pT

∞

=−∞

∞

=−∞

= − − + +

+ − −

∑

∑

⋯

 ( 1.50) 

 

Q.E.D. 
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2 Coverage 

2.1 Coverage of detecting Rain  

In this section we discuss the problem of detecting rain by an arbitrary set of lines. Attempting 

to reconstruct rain maps using the data which was obtained from the Commercial Wireless 

Networks (CWN) requires an understanding of the processing which each RSL value undergoes. 

Such a processing clearly depends on the exact equipment which is used in the cellular network. 

As any digitally stored data dictates, the RSL value undergoes quantization. RSL values are often 

saved after being quantized to a resolution of 1dB but a quantization of 0.1dB may also be 

commonly found. The effects of the atmosphere and weather on the performance of a mm-wave 

communication link have been analysed by Frey [14]. It has been found that the attenuation due 

to heavy rain at frequencies below 1 GHz is negligible. In fact, the rain induced attenuations are 

in the order of the quantization and hence may probably not be measured properly. However, at 

frequencies above 15GHz, the attenuation as a function of the rain rate is large enough to be 

measured. Figure 5 shows the rain induced attenuation as a function of the mm wave frequency. 

One may easily notice that at frequencies of around 20GHz, the attenuations go beyond the 

quantization magnitude. This is what enables a proper measurement of various rain rates, using 

the CWN. It must be stressed that this plot depicts the attenuations per km. Thus, longer links 

will cause larger attenuations for a constant rain rate which further eases the RSL quantization 

requirements. 

Backhaul operating frequencies of cellular networks vary depending on the communication 

technology. These are usually in the range of 20 GHz for longer range links and may reach up to 

40 GHz for short links where two antennas are closer one to its pair. This in turn means that we 

may indeed use the logged backhaul RSL samples in order to measure the rain rates. Figure 6 

shows the link lengths as a function of their frequencies, in an Israeli cellular provider network. 

This plot includes 3515 links and shows both directions of transmission, in blue and in red. The 

plot shows that transmission and reception frequencies rise as the link distance decreases. The 

plot also reveals the fact that common discrete frequencies are used within a specific cellular 

provider's network. This eases the management of frequencies between the various providers 

operating inside a certain country. 
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Figure 5 –Atmosphere and weather effects on performance of mm-wave communication link 

 [14] 

 

 
 

Figure 6 –The backhaul link lengths as a function of transmission frequencies. 
 

By using equation  (1.2) we may calculate the expected attenuation which is induced by a 

certain rain rate. Of course, this relation gives us the rain rate per unit distance (km). Hence, in 

order to know if a certain link will detect the rain we must consider its actual length. Moreover, 

we need to take into consideration the link's sensitivity. In other words, we must consider the 
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minimal rain rate which will cause a sensible attenuation. The lowest added attenuation which is 

sensible by a certain link is given by its quantization. 

Now, for each link, assuming a specific cloud profile, we may calculate the minimal rain rate 

which such a link may detect. The cloud profile enables us to infer on the section of the cloud 

which intersects with the link, and by such, causes an added attenuation due to rain. This notion 

is depicted in Figure 7 in which cases (a) to (d) show a link which intersects with a cloud in a 

manner which will cause an added attenuation. 

 

 
 

Figure 7 –Cloud intersecting with various links 
 

Hence, once we know a cloud's profile and a link's length we may calculate the exact 

intersection length and use equation  (1.2) and the link's quantization in order to calculate the 

minimal rain rate which is detectable by such a cloud. Denoting by intL  the section of the link 

which intersects with the cloud and by Q  the link's quantization, the minimal rain rate which is 

detectable by such a link is given by –  

1/

min

int

b

Q
R

aL

 
=  
 

 ( 2.1) 

 

Assuming a cloud's profile is given by a generalized ellipse which is rotated by an angle of θ  

and cantered at ( ),c cx y -  

( ) ( ) ( ) ( )
2 2

cos sin sin cos
1c c c cx x y y x x y yθ θ θ θ

α β
− + − − − −   

+ =   
   

 ( 2.2) 
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and the coordinates of a link's edges are given by ( ) ( )1 1 2 2, , ,x y x y  the equation which describes 

the link is given by –  

( )1 2
1 1

1 2

1 2

1 2

1 1

y y
y y x x

x x

y mx n

y y
m

x x

n y mx

−
− = −

−

 = +


−
⇒ =

−
 = −

 ( 2.3) 

 

The problem of determining the length of intL  reduces to solving a quadratic equation –  

( ) ( )

( ) ( )

2

1 2
1 1

1 2

2

1 2
1 1

1 2

cos sin

...

sin cos

1

c c

c c

y y
x x y x x y

x x

y y
x x y x x y

x x

θ θ

α

θ θ

β

   −
− + − − +   −    + 

 
 
 

   −
− − − − +   −    = 

 
 
 

 ( 2.4) 

 

Writing the equation above as a quadratic equation with coefficients ,A B and C  we may yield -   

( ) ( )
( ) ( )

2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2

0

cos 2 cos sin sin

sin 2 sin cos sin

2 cos 2 cos sin sin 2 2

2 sin 2 sin cos cos 2 2

cos 2 cos sin

c c c c

c c c c

c c

Ax Bx C

A m m

a m m

B x n y mx mn my

x n y mx mn my

C x m x n

β θ β θ θ β θ

θ α θ θ α θ

β θ β θ θ β θ

α θ α θ θ α θ

β θ β θ θ

+ + =

= + + +

+ +

= − + − − + − +

− − − − + −

= + − +( ) ( )

( ) ( )

22 2

22 2 2 2 2 2

2 2

sin

sin 2 cos sin cos

c c c

c c c c c

x y n y

x m x n x y n y

β θ

α θ α θ θ α θ

α β

+ − +

− − + + − +

−

 ( 2.5) 
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If the equation above has two solutions this implies that the line intersects with cloud in a 

manner which resembles either case (a) and (b) in Figure 7, if there is only one solution to the 

equation then the line intersects with cloud in a manner which resembles case (f) in Figure 7 and 

finally, if there is no solution to the equation then line intersects with cloud in a manner which 

resembles case (e) in Figure 7. Solutions to the inequality enable us to reveal cases (c) and (d). 

An understanding regarding which of these six cases we have in hand may be achieved by 

evaluating the discriminant of the quadratic equation. 

The choice of the rain attenuation power law coefficients a  and b  should be set according to 

the link's operative frequency. Most reconstruction, detection or estimation algorithms make use 

of values suggested by Olsen, Rogers and Hodge  [23] or Crane  [7]. Table 2 shows common 

power law coefficients which are used for converting RSL attenuations per km to rain rate, as 

given by  [7]. These coefficients are suitable for temperate maritime climate regions. 

 

Frequency Multiplier a  Exponent b  
1 GHz 0.00015 0.95 
4 GHz 0.0008 1.17 
5 GHz 0.00138 1.24 
6 GHz 0.0025 1.28 
7.5 GHz 0.00482 1.25 
10 GHz 0.0125 1.18 
12.5 GHz 0.0228 1.145 
15 GHz 0.0357 1.12 
17.5 GHz 0.0524 1.105 
20 GHz 0.0699 1.1 
25 GHz 0.113 1.09 
30 GHz 0.170 1.075 
35 GHz 0.242 1.04 
40 GHz 0.325 0.99 
50 GHz 0.485 0.9 

 

Table 2 – Power Law Coefficients 

 

In many hydrological applications, the actual interesting figure is the exact areas where a 

predetermined rain rate may or may not be detected. We may think of this as the inverse problem 

to the one discussed above. 

Generating such maps requires evaluating exactly where the previous detection map which 

states the minimal detectable rain rate is indeed above the desired detectable rain rate. 
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3 Reconstruction 

3.1 Reconstruction of a Sampled Function 

3.1.1 Solution Overview 

I address the problem of the ability to reliably reconstruct a two dimensional function (an 

image) being sampled by sums or projections along lines. I do not restrict in any manner the line 

types. Figure 8 depicts an example of such a sampling scheme. On the left hand side of this 

figure we see the underlying sampled image and its samples, in the case of the "classical" point 

sampling scheme; a regular grid of delta functions. Reconstruction from such a sampling scheme 

requires the usage of these point evaluations of the underlying function. On the right hand side of 

this figure we see the same underlying sampled image and its sampling scheme which is 

represented by the lines. One may easily notice that the lengths and angles of the lines are 

arbitrary, as the distances between the lines are. 

Our solution to the question regarding the ability to reconstruct a two dimensional function 

which is sampled by the suggested sampling scheme involves employing a series of three 

separate operations which will be described in the following sections. These three stages consist 

of firstly solving a problem of sampling with a regular grid (equally spaced locations with lines) 

but with arbitrary types of lines. In the second and third stages we display the problem of a non-

regular grid as one with missing samples. Essentially these three stages enable displaying this 

sampling scheme as a case of uniform sampling with missing samples  [1] [10] [11] [12]. Each 

sample is one which has been sampled by a linear functional. This functional is the mathematical 

representation of the line along which the projection has occurred. By considering these lines as 

linear functionals we enable the usage of the Generalized Sampling Expansion which was 

devised by Papoulis  [24]. 
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Line Type 2

 

Figure 8 – The "Classical" Sampling vs. the Arbitrary Line Projections Sampling 

 
 

3.1.2 Sampling with a single line type 

I now show why sampling with a single type of line cannot be used in order to properly 

reconstruct a signal. In essence, the problem of aliasing may be alleviated by sampling fast 

enough. However, a discrete set of frequencies cannot be properly reconstructed when sampling 

with integration along a single type of line. 

Sampling a 1D function with a line of length W may be thought of as a convolution with a 

Poisson comb after integrating –  

( ) ( ) ( )
/2

' '

/2

t nW

I

n t nW

f t f t dt t nTδ
+∞

=−∞ −

 
= − 

 
∑ ∫  ( 3.1) 

 

We make use of the Fourier integration property –  
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( ) ( ) ( ) ( )' ' 0
t F u

f t dt F u
iu

π δ
−∞

 
= + 

 
∫F  ( 3.2) 

 

We add a phase property to it and yield –  

( ) ( ) ( ) ( ) ( )' ' ' ' 0
t t

i u
F u

f t dt f t dt e F u
iu

α
αα π δ

+
−

−∞ −∞

     
= − = +     

    
∫ ∫F F  ( 3.3) 

 

We may now apply a Fourier transform on equation ( 3.1)  

( ) ( ) ( ) ( )
/2 /2

' ' ' '

/2 /2

t nW t nW

n nt nW t nW

f t dt t nT f t dt t nTδ δ
+ +∞ ∞

=−∞ =−∞− −

         
− = −      

         
∑ ∑∫ ∫F F  ( 3.4) 

 

Making use of the Poisson comb properties we yield –  

( ) ( ) ( ) ( )
/2 /2

' ' ' '

/2 /2

*
t nW t nW

s

n nt nW t nW

f t dt t nT f t dt u nuδ δ
+ +∞ ∞

=−∞ =−∞− −

     
− = −    

     
∑ ∑∫ ∫F F  ( 3.5) 

 

Making use of the integration property we yield –  

( ) ( ) ( ) ( )

( ) ( )

/2
' '

/2

* *

sinc

t nW iu iu

s s

n nt nW

s s

n

e e
f t dt u nu F u u nu

iu

F u nu u nu

δ δ
+ −∞ ∞

=−∞ =−∞−

∞

=−∞

   −
− = − =   

  

= − −

∑ ∑∫

∑

F

 ( 3.6) 

 

Finally, we see that first and foremost, in order to reconstruct ( )F u we must divide the 

outcome by the ( )sinc .  which values may be zero. 

Moreover, a sampling frequency in which no aliasing occurs doesn't exist due to the infinite 

support of the ( )sinc .  unless ( )f t  is band-limited. 

 

3.1.3 Usage of the Papoulis Generalized Sampling Expansion for our solution 

After having described the basic notion of the GSE, I now attempt to represent the Arbitrary 

Line Projections sampling scheme as a case of sampling with linear functionals. These 

functionals will represent our line projections. 
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Let us assume we are given a rather simple case of geometry of lines. A case where a two 

dimensional function was sampled by numerous arbitrary types of lines (two types in this 

example/figure). These lines may be of arbitrary angles and lengths. However, these lines are 

located on a regular grid. Such a simple case is depicted in Figure 9. 

 

Figure 9 – Sampling scheme with projections on arbitrary lines with a regular grid 

In such a case, we may employ the GSE by using two types of sampling functionals. One 

which will represent our first line type and the second to represent the second line type. 

In general, a linear functional which represents a line projection is given by –  

( )

( )
( )( )

( )

,

,

0.5 cos 0.5 cos
1,

, tan

0 ,

sin cos sin / 2
,

cos sin / 2

W

W

W x W

f x y y x

else

u v W
F u v W

u v W

θ

θ

θ θ
θ

θ θ

θ θ

− ≤ ≤


= =



+
=

+
i

 
( 3.7) 

 

In a case with only two lines the GSE set of linear equations is given by –  
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( ) ( )
( ) ( )

( )( )
( )

( )( )
( )
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e e
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 
 
 
 
 
 
 + + + 

 
( 3.8) 

 

Validating that they indeed form a valid set of sampling functionals requires evaluating the 

following determinant  

( )( )
( )

( )( )
( )

( ) ( )( )( )
( ) ( )( )

( ) ( )( )( )
( ) ( )( )

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

sin cos sin / 2 sin cos sin / 2

cos sin / 2 cos sin / 2

sin cos sin / 2 sin cos sin / 2

cos sin / 2 cos sin / 2

x y x y

x y x y

u v W u v W

u v W u v W

u c v c W u c v c W

u c v c W u c v c W

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

+ +

+ +

+ + + + + +

+ + + + + +

 
( 3.9) 

 

for the set of frequencies given by ( ) ( ),0 ,0x yσ σ− × − . xσ  and yσ  are given by the distances 

between the lines- 

1 1

2 2x y

x y

σ σ= =
∆ ∆

 ( 3.10) 

 

3.1.4 Usage of the Papoulis Generalized Sampling Expansion for our solution – An 
Example 

We now apply the formalism above for two lines with two angles of / 4π  and 3 / 4π and an 

equal length, as shown in Figure 10. 
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Figure 10 –GSE usage for two Lines with equal lengths and angles / 4π  and 3 / 4π  

As suggested by equation ( 3.9) the system of equations for the Generalized Sampling 

Expansion for two angles of / 4π  and 3 / 4π  are given by -  

( )( )
( )

( )( )
( )

( ) ( )( )( )
( ) ( )( )

( ) ( )( )( )
( ) ( )( )

sin 2 2 / 2 sin 2 2 / 2

2 2 / 2 2 2 / 2

sin 2 2 / 2 sin 2 2 / 2

2 2 / 2 2 2 / 2

x y x y

x y x y

u v W u v W

u v W u v W

u c v c W u c v c W

u c v c W u c v c W

+ − +

+ − +

+ + + − + + +

+ + + − + + +

 ( 3.11) 

 

Numerically evaluating its determinant yields -  
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Figure 11 –GSE usage for two lines with equal lengths – determinant evaluation 

Finally, now we know that these two lines can not form a proper sampling set and will yield 

non-reconstructable signals due to the frequencies for which the determinant evaluates to zero. 

We stress that the plot depicts the determinant evaluation for the set of frequencies 

( ) ( ), ,x x y yσ σ σ σ− × − but the evaluation is required only for ( ) ( ),0 ,0x yσ σ− × − ; 

In section  3.2.2 which deals with the problem of synthesis (or how to choose a proper set of 

lines) we show why to different lenghted lines with an angle of 90 degrees between them may 

never be used for the purpose of sampling/reconstructing. 

3.1.5 Coping with an irregular grid 

I now attempt to relax the assumption we made in the previous section in which the lines are 

located on a regular grid. For this purpose we need a method of regularizing a non-regular grid 

on which the lines are located on. Figure 12 depicts this notion in which the newly added lines 

appear in yellow on the right hand side. These are samples which we do not have (missing 

samples) but which if appeared, we would have had a regular grid. 
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Arbitrary Line Integrated Sampling 

Scheme - Non Regular Grid

Arbitrary Line Integrated Sampling 

Scheme – Regular Grid

Regularization

Line Type 2
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Figure 12 – The Regularization of the sampling Grid 

We begin the regularization process with the identification of our linear sampling functionals. 

For this we are required to identify the number of different types of lines, where each type is 

characterized by its angle 
kθ  and its length

kW . 

Hence, the identification process requires examining each pair of lines and checking whether 

i jθ θ=  and 
i jW W=  (for i j≠ ). One may choose to ease the requirement of equivalence between 

two lines and define that two lines be treated as the same sampling functional if –  

i j i j W
and W Wθθ θ− ≤ ∆ − ≤ ∆  ( 3.12) 

 

To summarize, the pseudo code of the process of identifying the sampling functionals is shown 

below 
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Table 3 – Distinct Functional Identification Process 

 

In the example of Figure 12 we show that after the regularization process, each of the three 

sampling functionals is placed in every location on the regular grid. Hence, once we know the 

number of sampling functionals we would like to locate each of these sampling functionals on 

the regularized grid sites. For the purpose of doing so we must determine the proper sampling 

grid on which to locate the sampling functionals. However, this problem doesn't necessarily have 

a unique solution. We chose to add a constraint which compels choosing the grid with the 

minimal amount of newly located lines on the grid (marked as yellow lines in Figure 12). 

This suggests that we must find the maximal horizontal/vertical step sizes ,x y∆ ∆  between two 

nearby lines, which ensure that each existing line (marked as black lines in Figure 12) will fall on 

a valid grid site. The process of determining the grid step sizes begins with calculating the 

distances between the centres of nearby existing lines –  

1 1
x y

j i i j i ix x y yδ δ+ +− −≜ ≜  ( 3.13) 

 

Having calculated the sets { } { },x y

j jδ δ  we must find their common divisor. Choosing our grid 

step sizes as one of their common divisors compels that existing lines fall on valid grid sites. 

Choosing the greatest common divisor is the choice which maximizes the values of ,x y∆ ∆  and by 

such minimizes the amount of newly located lines. To summarize, we choose the values of 

,x y∆ ∆  as the Greatest common Divisor (GCD) of the sets { } { },x y

j jδ δ  -  

{ }( ) { }( )x y

x j y jGCD GCDδ δ∆ = ∆ =  ( 3.14) 

 

NumberOfFunctionals=TotalNumberOfLines 

For i=1 to TotalNumberOfLines-1 

    For j= i+1 to TotalNumberOfLines 

        If( |θi- θj|<∆θ & |Wi- Wj|<∆W ) 

            NumberOfFunctionals = NumberOfFunctionals-1 
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We may choose to quantize the values of { } { },x y

j jδ δ  to certain accuracy in order to relax the 

requirement of finding the maximal horizontal/vertical step sizes ,x y∆ ∆ , as we did with , Wθ∆ ∆ . If 

we do not insert any such relaxations the regularization algorithm may yield a very dense grid. 

We denote the quantization value for ,x y∆ ∆  by ,x yQ Q  respectively. Inserting the relaxation on 

the values of { } { },x y

j j
δ δ  yields –  

{ } { }x y

j j

x x y y

x y

Q GCD Q GCD
Q Q

δ δ   
   ∆ = ∆ =
      

i i  ( 3.15) 

 

where .    denotes the floor function. 

E.g. for a quantization value of 31 10−× we will yield the step sized up to a resolution of three 

figures after the decimal point. 

We then draw a grid of points with spacings of 
x∆ and 

y∆  between one another, beginning 

with the most upper left existing line location. For each point on the grid we locate the linear 

sampling functionals. 

We note that the ( ).GCD  of multiple values may be calculated by recursively calculating it on 

all of the entries - 

( )( )( )1 2 3, , ,...x GCD x GCD x GCD xδ δ δ∆ =  ( 3.16) 

 

3.1.6 Coping with an irregular grid – An Example 

Enabling a control over the precision of the regular grid which we attempt to fit, we would 

now like to understand which values yield better regularizations. When we state "better" we 

mean that the original existing lines are as close as possible to the ones of the regularization 

algorithm's output and we have a minimal amount of newly added lines. 

The simulation depicted in Table 4 shows how varying the values of ,x yQ Q  changes the 

regularization results. In this simulation we used three different values of 
xQ  and set

y xQ Q= . 

One may easily notice that smaller quantization values usually yields denser grids. However this 

isn't necessarily true for every grid regularization problem. This is due to the fact that the GCD 
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function isn't monotonous. This implies that choosing the optimal quantization values requires 

some trial and error. 

However, it is always true that larger quantization values will reduce the accuracy and we 

notice that in the simulations with the higher quantization values, the initial red lines were fit to a 

yellow line which grows distantly apart from it. 

 

x yQ and Q  qW  qθ  Output Grid 

33.8 10−×  310 10−×  1/π   

 
 

32.9 10−×  310 10−×  1/π   

 
 

30.87 10−×  310 10−×  1/π   
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Table 4 – Evaluation of the Regularization Algorithm 

 

 

3.1.7 Missing Samples 

3.1.7.1 Missing Samples in the classical sampling scheme 

In order to better clarify how we cope with the newly added lines which we are missing we 

first solve the inverse problem for the classical sampling scheme  [10] [11] [12] with a train of 

delta functions. 

Let us consider ( )f t  as a σ  band limited function if –  

2f L∈  and ( ) 0F u u σ= ≥  ( 3.17) 

which is sampled at a rate of 1/ T  such that 
1

2T
σ < . By the Shannon reconstruction formula we 

know that we may relate ( )f t  to its samples by –  

( ) ( ) ( )2 sinc 2
k

f t T f kT t kTσ σ
∞

=−∞

= −  ∑  ( 3.18) 

 

Let us denote the by { }1 2 3, , ,..., nS i i i i=  a finite set of integers which correspond to the 

locations of the unknown/missing samples of ( )f t . 

Setting { }1, 2,...,jt i T j n= ∈  we may write –  
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( ) ( ) ( )

( ) ( ) ( ) ( )
1

2 sinc 2

2 sinc 2 2 sinc 2

j j

k

n

j j k

k S k

f i T T f kT i T kT

T f kT i T kT T f kT i T i T

σ σ

σ σ σ σ

∞

=−∞

∉ =

 = − = 

   = − + −   

∑

∑ ∑
 ( 3.19) 

 

We may write this set of n  equations as –  

f = h + Af  ( 3.20) 

 

where f is the column vector of unknown samples  

( ) ( ) { }1, 2,...,jj f i T j n∈f =  ( 3.21) 

 

h is the column vector composed of the known samples  

( ) ( ) ( ) { }2 sinc 2 1, 2,...,j

k S

j T f kT i T kT j nσ σ
∉

 − ∈ ∑h =  ( 3.22) 

 

and A is a matrix with the following entries –  

( ) ( ) { }, 2 sinc 2 , 1,2,...,j kA j k T T i i j k nσ σ − ∈ =  ( 3.23) 

 

Finally, the vector of unknown samples f may be found by solving the inverse problem –  

( ) 1−
−f = I A h  ( 3.24) 

 

This also implies that the vector of unknown samples f may be calculated if the following 

determinant is non zero. 

0− ≠I A  ( 3.25) 

 

Our desire is to apply a similar formalism for our purpose, the problem of missing projective 

samples which are one of the added samples from the regularization phase. 

 

3.1.7.2 Missing Samples in the Arbitrary Line Projections sampling scheme 

After applying the regularization process described in section  3.1.5, we are left with a fully 

regular grid where each grid site consists of our linear sampling functionals. However, our 
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original sampling scheme didn't consist of the newly located lines (the yellow ones in Table 4). I 

now formalize the problem as a problem of missing samples. 

Following a similar formalism as described in section  3.1.7.1, we address the case of missing 

samples for the case of the Arbitrary Line Projections sampling scheme. 

Let us define ( ),f x y  as a ( ),x yσ σ  band limited function if  

2f L∈  and ( ), 0 x yF u v u or vσ σ= ≥ ≥  ( 3.26) 

which is sampled at a rate of 1/ 1/x yT T  such that 
1 1

2 2
x y

x yT T
σ σ< < . Without loss of 

generality, we may relate ( ),f x y  to its samples by equation ( 1.50) –  

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1

1

, , , , ,

, ,

x y x y x y x y

g g g g m g g m g g

p q

m
x y x y

k g g k g g

p q k

f x y g pT qT y x pT y qT g pT qT y x pT y qT

g pT qT y x pT y qT

∞ ∞

=−∞ =−∞

∞ ∞

=−∞ =−∞ =

 = − − + + − − = 

= − −

∑ ∑

∑ ∑ ∑

⋯

 ( 3.27) 

 

We recall that this reconstruction equation indicates that ( ),f x y  was sampled by m  linear 

functionals. 

Let us denote the missing samples indices by the set –  

( ) ( ) ( ) ( ){ }11 12 1
, , 1 , , , 1 , , , , , , ,

r ml
S p q k p q k p q k r p q k m= = = = =… …  ( 3.28) 

 

Examining the equation above, we divide it to a sum of samples we have and missing ones –  

( ) ( ) ( )
{ }

( ) ( )
{ }, , , ,

, , , , ,k x y k x y k x y k x y

p q k S p q k S

f x y g pT qT y x pT y qT g pT qT y x pT y qT
∉ ∈

= − − + − −∑ ∑  
( 3.29) 

 
The values ( ),k x yg pT qT  in which , ,p q k S 

 
 

∉  are samples which we had before the 

regularization of the grid. We would like to make sure that a reconstruction is possible without 

the missing samples ( ) , ,,
k x y

Sp q kg pT qT  
 
 

∈ . 

We notice that if we integrate the left hand side of ( 3.29) along the line with the angle 
kθ  and 

the length kW  which is located at ( ) ( ), ,x yx y pT qT=  we yield our missing sample which is 

exactly ( ),
k x y

g pT qT . 
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Applying this integration on the right hand side requires calculating the solution to the GSE 

linear system which is given in ( 1.39), which yields the functions ( ),ky x y . We may use ( 1.39) in 

order to complete the integration of the right hand side –  

( )
( )

( ) ( )

( )' ' ' ' ' ' ' '

2 2

, , , ,

, , , ,
2 2

u v
u v

u v

m m
j ux vy

k x y k

u vt p q k t p q k

m m
y x pT y qT dt Y u v x y e dudvdt

σ σ
σ σ

σ σσ σ

− + +

+

− −∈ ∈

− − =∫ ∫ ∫ ∫  ( 3.30) 

 

Integrating along the line with the angle kθ  and length kW  which is located at 

( ) ( ), ,x yx y pT qT=  is denoted by ( )
( )' ' ' ', ,

.k

t p q k

y dt

∈

∫ . 

Let us denote the results of the integration by –  

( )
( )

' ' '

' ' ' ', ,

,
k k kp q

t p q k

y x y dt A

∈

∫ ≜  
( 3.31) 

 

where the indices ( )' ' ', ,p q k are the appropriate indices given to the missing sample in S . e.g. – 

if we were to integrate the fourth functional along a line which corresponds to the missing 

sample ( )
35

1,2,3  we would yield 3412A . 

After integration along the 'k  sampling functional we yield equations of the form -   

( ) ( )
{ }

( )
{ }

' ' '

, , , ,

, , ,x y k x y k x yk k kpq k kpq
p q k S p q k S

g pT qT g pT qT A g pT qT A
∉ ∈

= +∑ ∑  ( 3.32) 

 

where the sum over { }, ,p q k S∉  may be fully evaluated since ( ),k x yg pT qT  in which 

, ,p q k S 
 
 

∉  are samples which we had before the regularization of the grid. Hence, we may write 

( 3.32) as –  

( ) ( )
{ }

' ' '

, ,

, ,x y k x yk k k kpq
p q k S

g pT qT h g pT qT A
∈

= + ∑  ( 3.33) 

 

This is a set of linear equations which solution yields the missing samples 

( ) '
' , ,,

x yk
p q k Sg pT qT  

 
 

∈ . Writing this in matrix form gives us –  
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' ' '

1 1 1k k

k

kk k k k
k

g h g

g h g

= +

= +

∑

∑

A

A

� �

⋮
� �

 ( 3.34) 

 

Where the elements of the matrix 'k k
A  are 'k kpq

A . 

Defining the vectors –  

( )1, ,
T

k
g g g=
�� �� ��

…  ( 3.35) 

 

and 
 

( )1, ,
T

kh h h=
� � �

…  ( 3.36) 

 
enable displaying the set of equations in ( 3.34) as the augmented matrix –  
 

g h=M
�� �

 ( 3.37) 

 
Where M is called the augmented matrix and is given by –  

 

3

− − − − 
 − − − 
 − − −=
 
 
 − − − − 

11 12 13 1m

21 22 2m

31 33 m

m1 m2 m3 mm

I A A A A

A I A A

A I A AM

A A A I A

⋯

⋯ ⋯

⋮ ⋱

⋮ ⋮ ⋱ ⋱ ⋮

⋯

 ( 3.38) 

 

If the augmented matrices' determinant is non-zero we may restore the missing samples by 

using the ones we have. This is by virtue of the fact that the function has been over-sampled. 

 

 

3.1.8 Missing Samples - An Example 

I now apply the missing samples formalism which we devised in the previous section on the 

following regularized grid -  
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Figure 13 – Missing Samples Example 

In this example we have two types of sampling functionals from which we have two samples 

of the first one and only one sample of the second one. 

Due to the fact that we have two sampling functionals, we may write the reconstruction 

formula as (note: on the following section we denoted ( ) ( ) ( ) ( )1 1 2 2. . , . .f g f g≜ ≜ )-  

( ) ( ) ( ) ( ) ( )1 1 2 2
,

, , , , ,
m n

f x y f m n y x m y n f m n y x m y n= − − + − −∑  ( 3.39) 

 

 And in explicit form –  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1

, 1,1 1, 1 1,1 1, 1

1,2 1, 2 1, 2 1, 2

2,1 2, 1 2,1 2, 1

2,2 2, 2 2,2 2, 2

3,1 3, 1 3,1 3, 1

3,2 3, 2 3,2 3, 2

4,1 4, 1

f x y f y x y f y x y

f y x y f y x y

f y x y f y x y

f y x y f y x y

f y x y f y x y

f y x y f y x y

f y x y

= − − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + ( ) ( )
( ) ( ) ( ) ( )

2 2

1 1 2 2

4,1 4, 1

4,2 4, 2 4,2 4, 2

f y x y

f y x y f y x y

− − +

− − + − −

 
( 3.40) 

 

We now explicitly write the values of the function at each sample location –  
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1

1

x

y

=

=
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1

1,1 1,1 1 1,1 1 1,1 1 1,1 1

1, 2 1 1,1 2 1, 2 1 1,1 2

2,1 1 2,1 1 2,1 1 2,1 1

2, 2 1 2,1 2 2, 2 1 2,1 2

3,1 1 3,1 1 3,1 1 3,1 1

3, 2 1 3,1 2 3, 2 1 3,1 2

4,1 1 4,1 1

f f y f y

f y f y

f y f y

f y f y

f y f y

f y f y

f y

= − − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + ( ) ( )
( ) ( ) ( ) ( )

2 2

1 1 2 2

4,1 1 4,1 1

4, 2 1 4,1 2 4, 2 1 4,1 2

f y

f y f y

− − +

− − + − −

 

1

2

x

y

=

=
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1

1,1 1,1 1 1,1 1 1,1 1 1,1 1

1, 2 1 1,1 2 1, 2 1 1,1 2

2,1 1 2,1 1 2,1 1 2,1 1

2, 2 1 2,1 2 2, 2 1 2,1 2

3,1 1 3,1 1 3,1 1 3,1 1

3, 2 1 3,1 2 3, 2 1 3,1 2

4,1 1 4,1 1

f f y f y

f y f y

f y f y

f y f y

f y f y

f y f y

f y

= − − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + ( ) ( )
( ) ( ) ( ) ( )

2 2

1 1 2 2

4,1 1 4,1 1

4, 2 1 4,1 2 4, 2 1 4,1 2

f y

f y f y

− − +

− − + − −

 
2

1

x

y

=

=
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1

1,1 1,1 1 1,1 1 1,1 1 1,1 1

1, 2 1 1,1 2 1, 2 1 1,1 2

2,1 1 2,1 1 2,1 1 2,1 1

2, 2 1 2,1 2 2, 2 1 2,1 2

3,1 1 3,1 1 3,1 1 3,1 1

3, 2 1 3,1 2 3, 2 1 3,1 2

4,1 1 4,1 1

f f y f y

f y f y

f y f y

f y f y

f y f y

f y f y

f y

= − − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + ( ) ( )
( ) ( ) ( ) ( )

2 2

1 1 2 2

4,1 1 4,1 1

4, 2 1 4,1 2 4, 2 1 4,1 2

f y

f y f y

− − +

− − + − −

 

2

2

x

y

=

=
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1

1,1 1,1 1 1,1 1 1,1 1 1,1 1

1, 2 1 1,1 2 1, 2 1 1,1 2

2,1 1 2,1 1 2,1 1 2,1 1

2, 2 1 2,1 2 2, 2 1 2,1 2

3,1 1 3,1 1 3,1 1 3,1 1

3, 2 1 3,1 2 3, 2 1 3,1 2

4,1 1 4,1 1

f f y f y

f y f y

f y f y

f y f y

f y f y

f y f y

f y

= − − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + ( ) ( )
( ) ( ) ( ) ( )

2 2

1 1 2 2

4,1 1 4,1 1

4, 2 1 4,1 2 4, 2 1 4,1 2

f y

f y f y

− − +

− − + − −

 
3

1

x

y

=

=
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1

3,1 1,1 3 1,1 1 1,1 3 1,1 1

1, 2 3 1,1 2 1, 2 3 1,1 2

2,1 3 2,1 1 2,1 3 2,1 1

2, 2 3 2,1 2 2, 2 3 2,1 2

3,1 3 3,1 1 3,1 3 3,1 1

3, 2 3 3,1 2 3, 2 3 3,1 2

4,1 3 4,1 1

f f y f y

f y f y

f y f y

f y f y

f y f y

f y f y

f y

= − − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + ( ) ( )
( ) ( ) ( ) ( )

2 2

1 1 2 2

4,1 3 4,1 1

4, 2 3 4,1 2 4, 2 3 4,1 2

f y

f y f y

− − +

− − + − −

 

3

2

x

y

=

=
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1

3,1 1,1 3 1,1 1 1,1 3 1,1 1

1, 2 3 1,1 2 1, 2 3 1,1 2

2,1 3 2,1 1 2,1 3 2,1 1

2, 2 3 2,1 2 2, 2 3 2,1 2

3,1 3 3,1 1 3,1 3 3,1 1

3, 2 3 3,1 2 3, 2 3 3,1 2

4,1 3 4,1 1

f f y f y

f y f y

f y f y

f y f y

f y f y

f y f y

f y

= − − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + ( ) ( )
( ) ( ) ( ) ( )

2 2

1 1 2 2

4,1 3 4,1 1

4, 2 3 4,1 2 4, 2 3 4,1 2

f y

f y f y

− − +

− − + − −

 
 

4

1

x

y

=

=
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1

3,1 1,1 3 1,1 1 1,1 3 1,1 1

1, 2 3 1,1 2 1, 2 3 1,1 2

2,1 3 2,1 1 2,1 3 2,1 1

2, 2 3 2,1 2 2, 2 3 2,1 2

3,1 3 3,1 1 3,1 3 3,1 1

3, 2 3 3,1 2 3, 2 3 3,1 2

4,1 3 4,1 1

f f y f y

f y f y

f y f y

f y f y

f y f y

f y f y

f y

= − − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + ( ) ( )
( ) ( ) ( ) ( )

2 2

1 1 2 2

4,1 3 4,1 1

4, 2 3 4,1 2 4, 2 3 4,1 2

f y

f y f y

− − +

− − + − −

 

4

2

x

y

=

=

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1

3,1 1,1 3 1,1 1 1,1 3 1,1 1

1, 2 3 1,1 2 1, 2 3 1,1 2

2,1 3 2,1 1 2,1 3 2,1 1

2, 2 3 2,1 2 2, 2 3 2,1 2

3,1 3 3,1 1 3,1 3 3,1 1

3, 2 3 3,1 2 3, 2 3 3,1 2

4,1 3 4,1 1

f f y f y

f y f y

f y f y

f y f y

f y f y

f y f y

f y

= − − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + − − +

− − + ( ) ( )
( ) ( ) ( ) ( )

2 2

1 1 2 2

4,1 3 4,1 1

4, 2 3 4,1 2 4, 2 3 4,1 2

f y

f y f y

− − +

− − + − −

 

Table 5 – Missing Samples an Example 
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The samples we have are ( ) ( ) ( )1 2 22,2 , 1,1 , 4,2f f f  as the red lines in Figure 13 suggests. We 

write the equations above as a linear system which divides between the known samples and the 

unknown samples – 1 21 2f h A f A f= + +
�� � �� ��

 

( )

( )

( )

( )

( )

( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 1 2 2 2 2

1 1 2 2 2 2

1 1 2 2 2 2

1 1

2, 2 1 2,1 2 1,1 1 1,1 1 4, 2 1 4,1 21,1

2, 2 1 2, 2 2 1,1 1 1, 2 1 4, 2 1 4, 2 21, 2

2, 2 2 2,1 2 1,1 2 1,1 1 4, 2 2 4,1 22,1

2, 2 2, 2 2 2,

3,1

3, 2

4,1

4, 2

f y f y f yf

f y f y f yf

f y f y f yf

f f y

f

f

f

f

− − + − − + − −

− − + − − + − −

− − + − − + − −

−
=

 
 
 
 
 
 
 
 
 
 
 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2

1 1 2 2 2 2

1 1 2 2 2 2

1 1 2 2 2 2

1 1 2 2 2

2 2 1,1 2 1, 2 1 4, 2 2 4, 2 2

2, 2 3 2,1 2 1,1 3 1,1 1 4, 2 3 4,1 2

2, 2 3 2, 2 2 1,1 3 1, 2 1 4, 2 3 4, 2 2

2, 2 4 2,1 2 1,1 4 1,1 1 4, 2 4 4,1 2

2, 2 4 2, 2 2 1,1 4 1, 2 1 4, 2

f y f y

f y f y f y

f y f y f y

f y f y f y

f y f y f

− + − − + − −

− − + − − + − −

− − + − − + − −

− − + − − + − −

− − + − − + ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

4 4, 2 2

1 1,1 1 1 1,1 2 1 2,1 1 1 3,1 1 1 3,1 2 1 4,1 1 1 4,1 2

1 1, 2 1 1 1, 2 2 1 2, 2 1 1 3, 2 1 1 3, 2 2 1 4, 2 1 1 4, 2 2

2 1,1 1 2 1,1 2 2 2,1 1 2 3,1 1

y

y y y y y y y

y y y y y y y

y y y y y

+

− −

− − − − − − − − − − − − − −

− − − − − − − − − − − − − −

− − − − − − − −

 
 
 
 
 
 
 
 
 
 
  
 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

2 3,1 2 2 4,1 1 2 4,1 2

2 1, 2 1 2 1, 2 2 2 2, 2 1 2 3, 2 1 2 3, 2 2 2 4, 2 1 2 4, 2 2

3 1,1 1 3 1,1 2 3 2,1 1 3 3,1 1 3 3,1 2 3 4,1 1 3 4,1 2

3 1, 2 1 3 1, 2 2 3 2, 2 1 3 3, 2 1 3 3, 2 2 3

y y

y y y y y y y

y y y y y y y

y y y y y y

− − − − − −

− − − − − − − − − − − − − −

− − − − − − − − − − − − − −

− − − − − − − − − − −( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )

( )

( )

( )

( )

( )

1

1

1

1

1

1

1

1 1 1 1 1 1 1

1

1 1 1 1 1 1 1

1,1

1, 2

2,1

3,1

3, 2
4, 2 1 3 4, 2 2

4,1
4 1,1 1 4 1,1 2 4 2,1 1 4 3,1 1 4 3,1 2 4 4,1 1 4 4,1 2

4, 2
4 1, 2 1 4 1, 2 2 4 2, 2 1 4 3, 2 1 4 3, 2 2 4 4, 2 1 4 4, 2 2

f

f

f

f

f
y

f
y y y y y y y

f
y y y y y y y

− − −

− − − − − − − − − − − − − −

− − − − − − − − − − − − − −

 
 

 
 
 
 
 
 
 
 
 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2

1 1,1 2 1 2,1 1 1 2,1 2 1 3,1 1 1 3,1 2 1 4,1 1

1 1, 2 2 1 2, 2 1 1 2, 2 2 1 3, 2 1 1 3, 2 2 1 4, 2 1

2 1,1 2 2 2,1 1 2 2,1 2 2 3,1 1 2 3,1 2 2 4,1 1

2 1, 2 2 2 2,

y y y y y y

y y y y y y

y y y y y y

y y

+

− − − − − − − − − − − −

− − − − − − − − − − − −

− − − − − − − − − − − −

− − −
+


 
 
 
 
 
 
 
 
 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 1 2 2, 2 2 2 3, 2 1 2 3, 2 2 2 4, 2 1

3 1,1 2 3 2,1 1 3 2,1 2 3 3,1 1 3 3,1 2 3 4,1 1

3 1, 2 2 3 2, 2 1 3 2, 2 2 3 3, 2 1 3 3, 2 2 3 4, 2 1

4 1,1 2 4 2,1 2 4 2,1 1 4 3,1 1 4 3,1 2 4 4,1

y y y y

y y y y y y

y y y y y y

y y y y y y

− − − − − − − − −

− − − − − − − − − − − −

− − − − − − − − − − − −

− − − − − − − − − − − −( )

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

( )

( )

( )

( )

2

2

2

2

2

2

2 2 2 2 2 2

1, 2

2,1

2, 2

3,1

3, 2

1 4,1

4 1, 2 2 4 2, 2 2 4 2, 2 1 4 3, 2 1 4 3, 2 2 4 4, 2 1

f

f

f

f

f

f

y y y y y y− − − − − − − − − − − −

 
                   
 

 

( 3.41) 

 

We would like to find the samples 1f
��

 and 2f
��

 (which total in 13 missing samples as the 

yellow lines in Figure 13 suggests). For this purpose we write the equations above in this form 

but before plugging in the values of x  and y . 

This enables us to first integrate and then yield interesting results in the LHS of the system of 

equations. 

The equations which we yield by integrating the equation along the first type of functional are-  
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( )

( )

( )

( )

( )

( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 2 2

1 2 2

1 2 2

1 2 2

1

1 1122 1211 1242

1 1122 1211 1242

1 1122 1211 1242

1 1122 1211 1242

1

1

1

1

1,1 2, 2 1,1 4, 2

1, 2 2, 2 1,1 4, 2

2,1 2, 2 1,1 4, 2

2, 2 2, 2 1,1 4, 2

3,1 2, 2

3, 2

4,1

4, 2

f f f f

f f f f

f f f f

f f f f

f f

f

f

f

A A A

A A A

A A A

A A A

+ +

+ +

+ +

+ +
=

 
 
 
 
 
 
 
 
 
 
  
 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

1 2 2

1 2 2

1 2 2

1111 1122 1121 1131 1132 1141 1142

1111 1122 1121

1122 1211 1242

1122 1211 1242

1122 1211 1242

1122 1211 1242

1,1 4, 2

2, 2 1,1 4, 2

2, 2 1,1 4, 2

2, 2 1,1 4, 2

f f

f f f

f f f

f f f

A A A A A A A

A A A

A A A

A A A

A A A

A A A

+
+ +

+ +

+ +

+ +

 
 
 
 
 
 
 
 
 
 
  
 

1131 1132 1141 1142

1111 1122 1121 1131 1132 1141 1142

1111 1122 1121 1131 1132 1141 1142

1111 1122 1121 1131 1132 1141 1142

1111 1122 1121 1131 1132 1141 1142

1111 1122 1121 1131 1132 1141 1142

1111

A A A A

A A A A A A A

A A A A A A A

A A A A A A A

A A A A A A A

A A A A A A A

A

( )

( )

( )

( )

( )

( )

( )

1

1

1

1

1

1

1

1122 1121 1131 1132 1141 1142

1212 1221 1222 1231 1232 1241

1212 1221 1222 1231 1232 1241

1212 1221 1222 1231 1232 1

1,1

1, 2

2,1

3,1

3, 2

4,1

4, 2

f

f

f

f

f

f

f
A A A A A A

A A A A A A

A A A A A A

A A A A A A

+

+

 
  
  
  
  
  
  
  
  
     

 

( )

( )

( )

( )

2

2

2

2

2

241

1212 1221 1222 1231 1232 1241

1212 1221 1222 1231 1232 1241

1212 1221 1222 1231 1232 1241

1212 1221 1222 1231 1232 1241

1212 1221 1222 1231 1232 1241

1, 2

2,1

2, 2

3,1

3

f

f

f

f

f

A A A A A A

A A A A A A

A A A A A A

A A A A A A

A A A A A A

 
 
 
 
 
 
 
 
 
 
 
 

( )

( )
2

, 2

4,1f

 
 
 
 
 
 
 
 
 

 

( 3.42) 

 

The equations which we yield by integrating the equations along the second type of functional 

are of similar form and are given by -  
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( )

( )

( )

( )

( )

( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 2 2

1 2 2

1 2 2

1 2 2

1

2 2122 2211 2242

2 2122 2211 2242

2 2122 2211 2242

2 2122 2211 2242

2

2

2

2

1,1 2, 2 1,1 4, 2

1, 2 2, 2 1,1 4, 2

2,1 2, 2 1,1 4, 2

2, 2 2, 2 1,1 4, 2

3,1 2, 2

3, 2

4,1

4, 2

f f A f A f A

f f A f A f A

f f A f A f A

f f A f A f A

f f

f

f

f

+ +

+ +

+ +

+ +
=

 
 
 
 
 
 
 
 
 
 
  
 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

1 2 2

1 2 2

1 2 2

2111 2112 2121 2131 2132 2141 2142

2111 2112 2121

2122 2211 2242

2122 2211 2242

2122 2211 2242

2122 2211 2242

1,1 4, 2

2, 2 1,1 4, 2

2, 2 1,1 4, 2

2, 2 1,1 4, 2

A A A A A A A

A A A

A f A f A

f A f A f A

f A f A f A

f A f A f A

+
+ +

+ +

+ +

+ +

 
 
 
 
 
 
 
 
 
 
  
 

2131 2132 2141 2142

2111 2112 2121 2131 2132 2141 2142

2111 2112 2121 2131 2132 2141 2142

2111 2112 2121 2131 2132 2141 2142

2111 2112 2121 2131 2132 2141 2142

2111 2112 2121 2131 2132 2141 2142

2111

A A A A

A A A A A A A

A A A A A A A

A A A A A A A

A A A A A A A

A A A A A A A

A

( )

( )

( )

( )

( )

( )

( )

1

1

1

1

1

1

1

2112 2121 2131 2132 2141 2142

2212 2221 2222 2231 2232 2241

2212 2221 2222 2231 2232 2241

2212 2221 2222 2231 2232 2

1,1

1, 2

2,1

3,1

3, 2

4,1

4, 2

f

f

f

f

f

f

f
A A A A A A

A A A A A A

A A A A A A

A A A A A A

+

+

 
  
  
  
  
  
  
  
  
     

 

( )

( )

( )

( )

2

2

2

2

2

241

2212 2221 2222 2231 2232 2241

2212 2221 2222 2231 2232 2241

2212 2221 2222 2231 2232 2241

2212 2221 2222 2231 2232 2241

2212 2221 2222 2231 2232 2241

1, 2

2,1

2, 2

3,1

3

f

f

fA A A A A A

A A A A A A f

A A A A A A f

A A A A A A

A A A A A A

 
 
 
 
 
 
 
 
 
 
 
 

( )

( )
2

, 2

4,1f

 
 
 
 
 
 
 
 
 

 

( 3.43) 

 

 

From these equations we can generate a system of equations which will enable us to reveal 

whether we may reconstruct the signal by checking the determinant of this system. The new 

system of equations will be built by choosing a subset of equations out of the ones we showed 

above. We choose only those equations which have a missing sample appearing on the RHS. 

This will give us exactly 13 equations. 

This in fact is the process which yields the augmented matrix which in this case is –  

1 1

2 2

f h

f h

− −     
= =          − −     

11 12

21 22

I A A
M M

A I A
 ( 3.44) 

 

The dimensions of the matrices ijA  are determined by the amount of missing samples from 

each sampling functional. In this example their dimensions are given by – 

[ ] [ ] [ ] [ ]7 7, 7 6, 6 7, 6 6= × = × = × = ×11 12 21 22A A A A  ( 3.45) 

 

Due to the fact that we have 7 missing samples from the first sampling functional and 6 from 

the second. A numerical calculation of the determinant of M  may prove that it is identically 
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zero, a case in which we cannot reconstruct the missing samples from the ones we have. This is a 

sensible result due to the fact that we are missing a very large amount of samples. 

 

3.1.9 Integrating the 3 Phases 

In sections  3.1.3,  3.1.5 and  3.1.7 I have described a procedure with which one may test if a 

concrete realization of the Arbitrary Line Projections sampling scheme renders a reconstructable 

function. These tests involve the following stages –  

1. Identify the linear sampling functionals after choosing ,
Wθ∆ ∆  

2. Calculate the GSE determinant using these functionals and ensure it is non-zero for every 

frequency in [ ] [ ], ,u u u v v vc cψ σ σ σ σ= − − + × − − +  

3. Regularize the non-regular grid using the sampling functionals. 

4. Identify the missing samples and calculate the augmented matrix M  

5. Ensure the determinant of M  is non-zero 

6. If all of the tests above have passed we proclaim the sampled function to be 

reconstructable 

 

3.1.10 Computational Complexity of the Solution 

3.1.10.1 Definitions and "otations 

As stated in section  3.1.9, applying our solution to the problem of identifying sampling 

schemes which yield reconstructable functions involve three phases. These are; identifying the 

sampling functionals and regularizing the grid, calculating the GSE matrix and evaluating its 

determinant and finally, calculating the augmented matrix and ensuring that it is non singular by 

evaluating its determinant. 

Let us use the following notations for the sake of developing analytical terms which determine 

our computational complexity -  

 

Term Explanation 
m  Number of distinct sampling functionals 
n  Number of samples 
ρ  Ratio of missing samples 

{ }1,...,jf j n∈  The thj  sample 
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{ }1,...,x

jf j n∈  The thj  sample x  coordinate 

{ }1,...,y

jf j n∈  The thj  sample y  coordinate 

k  The amount of samples including missing ones (after regularization) 

GSE∆  The step size for evaluating the GSE determinant 

∆M  The integration step size for constructing the augmented matrix 

Table 6 – Computational Complexity Terms 

 

3.1.10.2 Complexity of Coping with an irregular grid 

The identification of distinct sampling functionals requires checking whether pairs of samples 

were projected along similar sampling functionals, as suggested in Table 3. This implies that 

calculating m  requires a number of operations which is proportional to –  

( )2O n  ( 3.46) 

 

Calculating the amount of missing samples requires calculating regularizing the grid, which 

requires calculating the GCD from n  samples. The complexity of calculating the GCD, using 

Euclid's algorithm is known to be { }( )( )3

2 2max log , logO a b        where a  and b  are a pair of 

numbers. In our case, we apply a recursive GCD with the coordinates of our n  samples. Hence, 

the complexity of the regularization phase is –  

{ }( )
3

2max log x

i
i

O f
     

 ( 3.47) 

 

3.1.10.3 Complexity of the Generalized Sampling Expansion Usage 

The GSE matrix dimensions' is m m× . The most straightforward method to calculate a 

matrices determinant employs the LU  decomposition which is known to have a complexity of –  

( )3O m  ( 3.48) 

Let us recall that employing the GSE expansion assumes that ( ),f x y  is a ( ),x yσ σ  band 

limited function as defined in ( 1.33).  We must then evaluate its determinant for a set of 

frequencies in the range which is given by –  

( ) ( ) ( ), , 2 / , 2 /x x x y y yu v m mσ σ σ σ σ σ∈ − − + × − − +  ( 3.49) 
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Defining the evaluation step size by 
GSE∆  we have to evaluate the GSE determinant a 

following number of times –  

( )2

2 42 y x yx

GSE GSE GSE
m m m

σ σ σσ 
= ∆ ∆ ∆ 

i  ( 3.50) 

 

Considering this together with the complexity of the LU  decomposition algorithm, gives us 

the total complexity which is required for evaluating the GSE determinant – 

( )
3

2

1
max ,

GSE

O m
m

      ∆   
 ( 3.51) 

 

 

3.1.10.4 Complexity of coping with Missing Samples 

 

The last phase which we must employ is the evaluation of the augmented matrices 

determinant. We assume that once we know the amount and locations of the missing samples, 

they endure the following relation –  

n
k

ρ
=  ( 3.52) 

 

This also means that the amount of missing samples is given by-  

( )1
k n n

ρ
ρ
−

− =  ( 3.53) 

 

We must then construct a matrix of which dimensions are ( ) ( )k n k n− × −  and evaluate its 

determinant which yields a complexity of –  

( )( ) ( )3
3 3

3

1
O k n O n

ρ
ρ

 −
− =  

 
 

 ( 3.54) 

 

We must calculate ( )2
k n−  integrals each of which requires three integrations, as suggested in 

section  3.1.7. We define the integration units as follows –  
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1yx

GSE GSE

du dv dt
σσ

= = =
∆ ∆ ∆M

 ( 3.55) 

 

This implies that the integration along a single missing sample requires –  

( )2

41 1 x y

GSE

O du dv dt O
m m m

σ σ      =            ∆ ∆   M

i i  ( 3.56) 

 

Finally, the phase of coping with the missing samples is of a complexity of –  

( )
( )
( )

2
3

2
max ,

GSE

k n
O k n

m

  −  −  ∆ ∆   M

 ( 3.57) 

 

 

3.2 "on Reconstructable Geometries 

In the following section we discuss different choices of sampling functionals which cannot 

yield reconstructable functions. Such a prior knowledge on the sampling sets which always yield 

a reconstructable or non reconstructable function may clearly decrease the complexity of solving 

the questions regarding the reconstructability, as suggested in section  3.1.10. 

 

3.2.1 Two Equally lengthed Sampling Functionals with Different Angles 

Lemma: 

No two lines with different angles but with equal lengths will always yield a non 

reconstructable function in the case of equal horizontal and vertical sampling rates 

Proof: 

Without loss of generality we choose 1 0θ = . A different angle is simple a rotation of the axis. 

The GSE determinant which must be evaluated is given by –  
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( ) ( )
( ) ( )

( ) ( )( )
( )

( )( )
( )( )

( ) ( )( )( )
( ) ( )( )

2 2

2 2
1 2

2 21 2

2 2

sin cos sinsin

cos sin, ,

sin cos sin, , sin

cos sin

x yx y x y x

x x y

u vu

u u vH u v H u v

u c v v cH u c v c H u c v c u c

u c u c v v c

θ θ

θ θ

θ θ

θ θ

+

+
=

+ + ++ + + + +

+ + + +

 ( 3.58) 

 

We evaluate this determinant and yield –  

( ) ( ) ( )( )( )
( ) ( )( )

( )( )
( )( )

( )( )
( )

2 2 2 2

2 22 2

sin cos sin sin sin cos sinsin

cos sincos sin

x y x

xx y

u c v v c u c u vu

u u vu cu c v v c

θ θ θ θ

θ θθ θ

+ + + + +
−

+++ + +
 ( 3.59) 

 

Requiring that this sampling set yields a non reconstructable sampling set means that we can 

find a set of frequencies which plugging them into the determinant nullifies it. And indeed, 

choosing,  

( ),
2

u v u v
σ

ψ= = − ∈  ( 3.60) 

 

Gives us the following -  

2 2 2 2

2 22 2

sin cos sin sin sin cos sinsin
2 2 2 2 22

0

cos sincos sin
2 2 22 2 2

σ σ σ σ σσ θ σ θ σ σ θ θ

σ σ σσ σ σ θ θθ σ θ σ σ

  −        − −      + + − + − + +−                              − =
− −          − +− + + − + − +                    

 
( 3.61) 

 

Manipulating these equations gives –  

2 2 2 2

2 2 2 2

sin cos sin sin cos sinsin sin
2 2 2 22 2

0

cos sin cos sin
2 22 2 2 2

σ σ σ σσ σθ θ θ θ

σ σσ σ σ σ
θ θ θ θ

      − −           + +−                                  − =
     − −        − + +                      

 ( 3.62) 

 

2 2 2 2

2 2 2 2

sin cos sin sin cos sin
2 2 2 2

0

cos sin cos sin
2 2 2 2

σ σ σ σ
θ θ θ θ

σ σ σ σ
θ θ θ θ

             + − +             
             − =

          + − +          
          

 ( 3.63) 
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2 2 2 2

2 2 2 2

sin cos sin sin cos sin
2 2 2 2

0

cos sin cos sin
2 2 2 2

σ σ σ σ
θ θ θ θ

σ σ σ σ
θ θ θ θ
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             − =

          + +          
          

 ( 3.64) 

 

This proves that for a sampling set which is composed of two lines with simmilar length but with 

different angles, no reconstruction of a band limited function can achieved. 

 

3.2.2 Two Different lengthed Sampling Functionals with 90 deg appart 

Lemma: 

No two lines with different lengths but with an angle of 90°  between them will always yield a 

non reconstructable function 

 

Proof: 

Without loss of generality we choose 1 0θ = . A different angle is simple a rotation of the axis. 

The GSE determinant which must be evaluated is given by –  

( ) ( )

( )( )
( )

( )( )
( )

( ) ( )( )
( )

( ) ( )( )
( )

1 2

1 2 2 11 2

2 1 2 121

1 2

sin / 2 sin / 2
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sin / 2 / 2 / 2 / 2/ 2sin / 2

/ 2 / 2
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y xyx

x y

uW vW

uW vW v c W u c WuW vW

v c W uW vW u c Wv c Wu c W

u c W v c W

+ +
= −

+ +++

+ +

 ( 3.65) 

 

We evaluate this determinant and yield –  

( ) ( )( )
( )

( ) ( )( )
( )

2 11 2
sin / 2 sin / 2sin / 2 sin / 2y x

xy

v c W u c WuW vW

u v u cv c

+ +
−

++
 ( 3.66) 

 

Requiring that this sampling set yields a non reconstructable sampling set means that we can 

find a set of frequencies which plugging them into the determinant nullifies it. And indeed, 

choosing,  
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( ), ,
2 2

yxu v u v
σσ

ψ= − = − ∈  ( 3.67) 

 

Gives us the following -  

2 2 11
sin / 2 sin / 2 sin / 2sin / 2

2 2 22

2 222

y y xx
y x

x yy x
xy

W W WW
σ σ σσ σ σ

σ σσ σ
σσ

         − + − − + −                   −
   − − +−− +      

 ( 3.68) 

 

Manipulating these equations gives –  

2 2 11
sin / 2 sin / 2 sin / 2sin / 2

2 2 22
0

2 222

y y xx

x yy x

W W WW
σ σ σσ

σ σσ σ

                            − =
   

     

 ( 3.69) 

 

This proves that for a sampling set which is composed of two lines with different lengths but 

with an angle of 90°  apart, no reconstruction of a band limited function can be achieved. 
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4 Application 

4.1 Coverage 

The following figures depict the results of an implementation of a tool which receives link 

coordinates, quantization values and lengths at its input and generates coverage maps. The tool 

enables setting the generalized ellipse's parameters as the cloud profile. It also enables choosing 

the power law coefficients.  

We applied the simulations below on a set of links from the Israeli cellular service provider 

named Cellcom. These included a set of 3515 links. We chose the power law coefficients as 

0.15 1.09a b= =  due to the fact that the links operate at frequencies ranging at around 27Ghz . 

We also simulated threshold maps as discussed in the previous section. 

One may easily notice that the cloud's profile vastly affects the size of the areas which are 

undetectable or out of coverage. This tool gives an insight on the locations where rain gauges or 

other rain monitoring equipment must be added in order to achieve a flawless system. We 

discuss this issue more in depth in following section. 
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Figure 14 –Coverage Map I 
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Figure 15 – Coverage Threshold Map I 
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Figure 16 – Coverage Map II 
 

 

Figure 17 – Coverage Threshold Map II 



Page 65 of 101 

 

 

 

Figure 18 – Coverage Map III 
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Figure 19 – Coverage Threshold Map III 
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4.1.1 Sensitivity to "etwork Parameters 

The problem of constructing a rain map via CWN as discussed in section  2.1 involves 

choosing or determining the rain profile which is of interest. Given a set of links one may then 

apply the procedure which was presented in section  4.1 for the sake of locating the undetectable 

regions or areas out of coverage. 

Once undetectable regions were located, one may choose to apply a number of actions in order 

to improve the detection coverage: 

1. Increase the operational frequencies of the existing links. This in turn will yield a 

higher sensitivity of the links to the rain rate, as is depicted in Figure 5. 

2. Increase the length of the existing links. This will assist in reaching the quantization 

level and will enable covering more areas. However this will assist only in cases where 

the cloud profile is larger than the existing links and where increasing the line length 

will cause an increase in the line intersection. 

3. Decrease the quantization of the links and by such increase the links' sensitivity to 

detecting rain 

4. Add links in areas which are out of coverage 

 

In Figure 20 we simulate the effect of choosing a different operational frequency. The left 

figure depicts the minimal detected rain in case the links operate at a frequency of 5 GHz, the 

middle figure includes links operating at a frequency of 25 GHz and the right most figures 

includes links operating at a frequency of 40Ghz. 

In Figure 21 we simulate the effect of choosing a different quantization. The left figure depicts 

the minimal detected rain in case the links operate at a quantization of 1dB and right figure 

includes links operating at a quantization of 0.1dB. 

In Figure 22 and Figure 23 we show the thresholded maps of Figure 20 and Figure 21 

respectively. 
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Figure 20 – Improving the Coverage – Links Operational Frequency 

Figure 20 clearly shows the fact that as the operational frequency increases, so does the 

sensitivity to the rain rate. 

 

 
 

Figure 21 – Improving the Coverage – Links Operational Quantization 

Figure 21 clearly shows the fact that as the quantization decreases, the sensitivity to the rain 

rate increases. 
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Figure 22 – Improving the Coverage – Links Quantization Tresholded 
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Figure 23 – Improving the Coverage – Links Quantization Tresholded 
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4.2 Reconstructability 

4.2.1 Example 1 

Let us consider the set of wireless links around the area in Israel named Ramot-Menashe. We 

examine a set of links in that area and find the links depicted in Figure 24. 

One may easily identify that in this case there are two different types of sampling functionals 

despite the fact that we have three links (two of the links are similar in length and angle). We 

apply the regularization procedure described above and yield the regularized grid of sampling 

functions as depicted in Figure 24 on the right hand side. 

 
 

Figure 24 – The Microwave Links in Ramot-Menashe 

 

Once the two sampling functionals have been determined we may calculate the GSE 

determinant which is given by the following –  

( )( )
( )

( )( )
( )

( ) ( )( )( )
( ) ( )( )

( ) ( )( )( )
( ) ( )( )
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cos sin / 2 cos sin / 2
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u v u v

u v u v

u v W u v W
W W

u v W u v W

u v W u v W
W W

u v W u v W

θ θ θ θ

θ θ θ θ

σ θ σ θ σ θ σ θ

σ θ σ θ σ θ σ θ

+ +

+ +

+ + + + + +

+ + + + + +

 ( 4.1) 

 

where ,u vσ σ  are related to the grid distances ,x y∆ ∆  by 12 x uσ −∆ =  and similarly for 
vσ .  

Numerically evaluating this determinant for the set of required frequencies ψ  proves that it is 

non-zero and that usage of these two sampling functionals may enable a reliable reconstruction. 
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Figure 25 – The GSE determinant - example I 

 

We now commence with the test process. We are now left with the evaluation of the 

augmented matrix determinant. The missing samples are those marked in yellow in Figure 24. 

Let us denote by 1g  the longer sampling functional and by 2g  the shorter sampling functional. 

i.e. – we are missing the following samples –  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1 1

2 2 2 2 2 2

1,1 , 1,2 , 1,3 , 1,4 , 2,1 , 2,3 , 2,4

1,2 , 1,3 , 1,4 , 2,1 , 2,2 , 2,3

g g g g g g g

g g g g g g
 ( 4.2) 

 

We now must construct the augmented matrix. This is actually, the exact case which we 

explicitly solved in section  3.1.8. This process yielded the following structure for the augmented 

matrix. 

1 1

2 2

g h

g h

− −     
= =          − −     

11 12

21 22

I A A
M M

A I A
 ( 4.3) 

 

Calculating the determinant of Μ  proves that it is singular and thus we cannot reconstruct the 

missing samples from the ones we have. This is a sensible result due to the fact that we are 

missing a very large amount of samples. 
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4.2.2 Example 2 

Let us consider another set of lines as given in Figure 26. One may easily identify that in this 

case there are three different types of sampling functionals. We apply the regularization 

procedure described above and yield the regularized grid of sampling functions as depicted in 

Figure 26 on the right hand side. 

 

Figure 26 – The Arbitrary Lines – Example II 

 

Once the three sampling functionals have been determined we may calculate the GSE 

determinant which is given by the following –  
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( 4.4) 

 

 

Similarly to the first example, ,u vσ σ  are related to the grid distances ,x y∆ ∆  by 12 x uσ −∆ =  

and 12 y vσ −∆ = . Numerically evaluating this determinant for the set of required frequencies 

[ ] [ ], / 3 , / 3u u v vψ σ σ σ σ= − − × − −  proves that it is non-zero and that using these three sampling 
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functionals may yield a reliable reconstruction. The numerical evaluation of the determinant 

appears in Figure 27. 

 

Figure 27 – The Arbitrary Lines – Example II – The GSE Determinant 

 

We are now left with the evaluation of the augmented matrix determinant. The missing 

samples are those marked in yellow in Figure 26. Let us denote the sampling functionals of 

which we have missing samples 1g  and 2g  (meaning 3g  doesn't have any missing samples). 

This in turn means that we are missing the samples ( )1 2,1g and ( )2 1,2g . We now must construct the 

augmented matrix –  

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1111 2 1211

2 2 1 2111 2 2211

2,1 2,1 1,2

1, 2 2,1 1, 2

g h g A g A

g h g A g A

= + +

= + +
 ( 4.5) 

 

Writing this in matrix form we have –  

1111 1211

2111 2211

1

1

s s

s s

− 
=  − 

M  ( 4.6) 

 

However, numerically calculating the determinant of M  proves that it is singular and thus we 

cannot reconstruct the missing samples from the ones we have. This is due to the fact that when 

we apply the GSE theorem we define –  

,

,

3

3

x -yq x

y -yq y

T T

T T

=

=
 ( 4.7) 
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The value of 3  represents three sampling functionals, and it means that we may sample 3 

times slower and still reconstruct samples functions up to the same original Nyquist frequency. 

This also means that we aren't over-sampling. We are sampling with the slowest sample rate 

required in order to reconstruct a function to its Nyquist frequency. If we recalculate M  using a 

faster sampling rate of–  

,

,

2

2

x -yq x

y -yq y

T T

T T

=

=
 ( 4.8) 

 

we find that 0≠M . This means that using the samples we have, we may now reconstruct the 

two missing samples. 

4.2.3 Example 3 

We now consider the case of links which was suggested by Giuli  [15] as depicted in Figure 28. 

In their article, Giuli et al showed cases of rain events which their links are able of reconstructing 

properly. These rain events are shown in Figure 29. 

 

Figure 28 – The Giuli Links  [15] 

Using our method we show that errors can indeed occur if Giuli's set of links is used for rain 

events with a high spatial frequency. Moreover, visually considering the rain events which they 

simulated easily shows the very low spatial frequency nature of the chosen events. Giuli et al 

chose to simulate rain events with a decay rate of ~ 4mm
hr kmi

 in a cell size of 215km , a very 

low spatial frequency, which isn't very prone to errors. 
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Figure 29 – The Giuli Rain Events  [15] 

 

Let us consider another set of lines as given in Figure 30. One may identify that in this case 

there are eight different types of sampling functionals. However, in our simulation we chose to 

quantize the angles in a manner which yields only 4 distinct line types. We apply the 

regularization procedure described in the previous sections and yield the regularized grid of 

sampling functions as depicted in Figure 30 on the right hand side. 



Page 77 of 101 

 

 

 

Figure 30 – The Giuli Lines Regularized– Example III 

 

Once the three sampling functionals have been determined we may calculate the GSE 

determinant which is given by the following –  
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( 4.9) 

 

 

Similarly to the first example, ,u vσ σ  are related to the grid distances ,x y∆ ∆  by 12 x uσ −∆ =  

and 12 y vσ −∆ = . Numerically evaluating this determinant for the set of required frequencies 

[ ] [ ], / 4 , / 4u u v vψ σ σ σ σ= − − × − −  proves that there is a set of frequencies for which no reliable 

reconstruction can be made. The numerical evaluation of the determinant appears in Figure 31. 
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Figure 31 – The Giuli Lines – Example III – The GSE Determinant 

 

4.2.4 Example 4 

The purpose of this example, as opposed to the previous examples is to present the weaknesses 

of our suggested solution. Our procedure for stating when a set of lines composes a proper set 

which will ensure the ability to reconstruct a sampled function isn't a two-directional procedure. 

In other words, it is a sufficient but not necessary condition. One may find a set of lines which 

our procedure states as insufficient for the sampling and reconstruction task however, intuition 

states that due to their nature they seem sufficient indeed. 

The example below shows that the intuition may work well by considering links of urban vs. 

rural areas in Israel. Clearly, as we move from an urban through a semi-urban to a rural area, the 

density of links decreases. This notion is also depicted by the histograms in Figure 2 where one 

may notice how the spread changes as we move from the central and urban area of Israel outside 

towards the sub-urban areas. In the most rural area of Israel, the centre of the Negev, the links of 

which direction is from north to south are usually very long. Being a rather rural area, these links 

serve a very small amount of population and hence, the CWN engineers attempt to minimize 

their amount. However, due to the fact that Israel is very long and narrow, the links from east to 

west have a length which may easily be found in urban or sub-urban areas too. 
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This nature of links causes the regularization process to return a very large amount of missing 

samples. This in turn, clearly causes the sampling set to be an insufficient set for the task of 

sampling and reconstruction. However, in urban areas where a very dense set of lines is present, 

the regularization process may also yield a very large amount of missing samples. This is 

because in such an area, a very large amount of distinct links are extant. This is most probably 

the most prominent weakness of our procedure. 

In the figure below we operated our procedure on three areas of Israel, two urban areas and 

one rural area. We chose quantization values θ∆  and W∆  which yielded only four types of 

distinct lines. This is of course a very crude approximation of the line types and it yields a very 

inexact approximation of the existing links. However, it also greatly assists in decreasing the 

amount of missing samples. This is because more of the existing links are quantized to one of the 

distinct types. 

Our intuition was that the two urban areas would yield a reconstructable set and that the rural 

one would yield an improper sampling set. However, as is seen in Figure 32, our suggested 

procedure states that one of the two urban areas is an insufficient sampling set. In Figure 32 we 

see the map of Israel links with three rectangles which surround the areas and links on which we 

operated our suggested procedure. The rectangles which are colored blue were found to be a 

sufficient set for the reconstruction task whereas the red rectangles which are colored red were 

found to be an insufficient set for the reconstruction task. 

This result is what emphasizes that the central weakness of our procedure is its attempt to 

regularize a highly irregular grid. We believe that a treatment of the reconstructability problem 

may be better treated within a framework of "irregular sampling". Moreover, such a large 

amount of missing samples, which is usually the output of the regularization algorithm, may 

yield a singular augmented matrix M  simply due to numerical instabilities (and not due to a true 

singularity). We discuss this future direction in section  5. 

In general we find it tough to state precisely what are common maximal spatial frequencies 

which are reconstructable in urban, sub-urban or rural areas due to the nature of our 

regularization process which may yield many missing samples for slightly different sampling 

realizations. 
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Figure 32 – Israel Links – Example IIII 
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5 Discussion 

5.1 A Discussion on our Simplifications and Future Directions 

 

In the preceding sections we discussed a few methods for determining when and where a set of 

lines may function properly in the task of generating coverage or reconstructability maps. The 

coverage maps, as mentioned above, are maps which state the locations which a level of rain 

above a sensitivity threshold may be detected. For the purpose of this problem we simulated a 

cloud which "scans" the map of lines in the country of Israel. For each line and cloud intersection 

we solved an equation which returns the minimal detectable rain rate. However, we have clearly 

simplified the problem immensely by assuming the cloud is a compact geometrical shape with a 

closed analytical form. Moreover, we have also assumed that within this closed geometrical 

shape, the rain rate is constant. These two assumptions may be easily relaxed for the task when 

the problem of generating coverage maps is treated in a brute force manner via a simulator. Any 

cloud profile with any rain rate within its form may be chosen and simulated for. 

We find the relaxation of the cloud profile to be a future extension direction which is 

inevitable. By properly looking into the statistical properties of rain fronts, one may choose a 

cloud (or rain front) profile which is properly reasoned and provides covrerage maps which any 

meteorological service can benefit from. 

We have also presented a method for determining whether an Arbitrary set of Projections 

along lines composes of a sampling scheme which yields a reconstructable function and to what 

frequency may a reliable reconstruction be held. This requires applying the Papoulis GSE, 

regularizing a non-regular grid with missing samples by the method described above, and finally, 

calculating what we have defined as the augmented matrix and testing for its singularity. 

We would like to state that for the case of two types of lines, there are certain angles between 

the lines which yield a non reconstructable function. An obvious example is the case where there 

is an angle of 90°  the lines. The arguments of the sinc functions in the GSE determinant are then 

exactly equal for any 0v =  and thus yield a determinant which is equal to zero. 

We have also found that no sampling scheme with only two lines and at least one missing 

sample may be reconstructed. This is due to the fact that sampling with only one type of line is 

equivalent to multiplying our spectrum with a sinc function which has numerous nulls in the 
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frequency domain. Hence, the fact that we have missing samples leaves us with some samples 

which contain missing data due to these sinc nulls. 

We find the first future research which should be treated properly is relaxing the requirement 

to regularize an irregular grid. The need to regularize the grid causes the need to evaluate 

determinants of very large matrices (in the part of determining the ability to cope with missing 

samples). We have also found cases in which a great number of lines covers a sampled area and 

which, despite one's intuition, our procedure states is a sampling set which yields a non-

reconstructable function. This is the strongest reason proving that the regularization process must 

be relaxed and treated otherwise. We stress that the procedure shown above provides a sufficient 

but not necessary condition for the reconstructability. We believe that this problem may 

somehow be treated within the framework of irregular sampling but this direction hasn't been 

fully pursuited. 

Also, we haven't explored the questions regarding the exact dependencies between the GSE 

matrix singularity and the lengths and angles of the sampling lines. It seems that an answer to 

which types of lines yield singular matrices and exactly why these lines cause the matrix's 

singularity may lead to insights dealing with a smart choice of these lines. Stressing yet again 

that more sampling lines in each sampling location yield a sampling grid which is ( )2O m  times 

less dense, motivates us to know exactly what types of lines to choose according to their lengths 

and angles. This in turn may enable the reduction of the sampling grid density (and reduce the 

sampling rate). 

The method suggested here may also be generalized for different types of sampling 

functionals. One may want to combine between sampling both with line projections and point 

samples (rain gauges). 

Usage of such a sampling scheme may greatly assist in reducing aliasing artefacts. This is due 

to both the low-pass nature of the local averaging due to the projections, and the added 

randomness which tends to reduces aliasing. 

We would like to stress that this work dealt only with the answer to the question regarding 

“whether a reconstruction is feasible”. If the procedure shown above yields a positive answer, the 

framework showed here also hints on the method of reconstruction. Usage of the interpolation 

kernels as given in ( 1.39) may assist in reconstructing the sampled function. However, we 

currently leave the question of determining what to do in case a sampling scheme was found to 

be insufficient for reconstruction unanswered. 
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Obviously this answer requires finding the exact critical missing samples, and then considering 

the “optimal” locations to add samples (line projections) to. However, as in the Nyquist sampling 

theorem, these reconstruction kernels have infinite support and by such limit our ability to 

perfectly reconstruct the sampled signal. 

We would also like to note that the solution to our problem only required evaluating the exact 

value of the reconstruction kernels at specific points and as such didn't require their determining 

their exact functional form. However, a reconstruction of a sampled function will clearly require 

the need to know their exact form. 

Another direction which we have touched only minimally was the treatment of this problem in 

the framework of stochastic processes. We have shown a method to evaluate or calculate the 

exact autocorrelation function of the sampling process (see the appendix). In our solution to this 

problem we assumed a uniform distribution of distance perturbations between adjacent lines, a 

uniform distribution of the line angles and finally, an exponential distribution of the line lengths. 

These assumptions enabled calculating the autocorrelation function in this particular case. From 

this point it is summoned upon to test the autocorrelation function for a variety of input spectra 

in order to find exactly under what terms can the input spectra be properly reconstructed. 

However, we emphasize that such an approach will only tell us if the average spectrum can be 

properly reconstructed. Employing the stochastic processes framework will never tell us if a 

concrete realization of a sampling set may be properly reconstructed. For an answer regarding a 

concrete specific sampling set one should follow an approach which resembles the approach 

which we have suggested here, the one which states when a set of lines indeed yields a 

reconstructable sampling set. 

Another direction which we found interesting but which we haven't fully explored in this 

thesis is the assumption of sparsity of the rain signal. If one is able to properly justify such an 

assumption, and find the basis with which the rain signal is sparse, he would be able to use 

compressive sensing tools which enjoy the ability of not needing to assume that the sampled 

function is band limited. And indeed, local rain events intuitively don't seem to have a band 

limited nature due to their very local nature. Such a rain event may consist of a very strong rain 

in a very small local area. As such, the rain resembles a rectangular function which, as is known, 

doesn't have a limited bandwidth (its Fourier transform is a sinc function). 
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I list below the future directions as I see them: 

• Generalize the cloud profile for the coverage problem 

• Consider statistical properties of rain clouds for the coverage problem 

• Relax the regularization requirement in the reconstructability problem 

Consider non-uniform sampling for this purpose 

• Provide necessary and sufficient condition to the reconstructability problem (as 

opposed to sufficient only) 

• Analyze exactly where should a link be added for reaching reconstructability 

• Extend the reconstructability problem to an actual reconstruction of a rain map 

 

5.2 Adding Rain Gauges 

After having treated the question regarding the reconstructability of a two dimensional 

function which is sampled by projections along lines with arbitrary geometry we may come 

across a set of microwave links which yield a non reconstructable function. 

The problem of how to reconstruct rain maps from this set of microwave links is then left 

open. Even if we knew which missing link is the one which renders the reconstruction process 

impossible, it is rather obvious that we may not be able to add a microwave link in the required 

location. This is mostly due to the price of such a link and our ability to intervene with the 

cellular operator's link management task. 

We would then like to add a cheaper rain monitoring device, a Rain Gauge. 

Rain Gauges are most probably the first precipitation (rain) measurement tools ever to be used. 

A Rain Gauge is a receptacle which is designed to measure the amount of rain which reaches the 

surface by simply accumulating it. Being so, its measurements are usually thought of as point 

samples. 

The main advantage of Rain Gauges in comparison to the alternative rain measurement 

systems is their low price and lack of any calibration process. However one must consider the 

difficulty in deploying a network of Rain Gauges which appropriately samples an area of 

interest. Moreover, acknowledging the spatial and temporal nature of precipitation one realizes 

the difficulty in properly sampling an area of interest using Rain Gauges alone.  
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5.2.1 Sampling with both Rain Gauges and Lines 

The true beauty in the Papoulis Generalized Sampling Expansion is its ability to treat any type 

of sampling functional as long as they are linear (or linear time/space invariant). If we treat the 

rain gauge as a simple delta function we indeed yield a LSI sampling functional. 

This enables us to repeat the entire formalism which we suggested above by simply adding 

another functional into the GSE phase. 

Let us assume that the sampling set which we had is one which is composed of two types of 

lines and a rain gauge, as is depicted in Figure 33. 

 

 
 

Figure 33 – Rain Gauge Sampling Scheme 
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We recall that the Fourier Transform of a shifted delta function is given by – 

 

( )
{}.

, yx
jd vjd u

x yx d y d e eδ ±±+ + ⇔
F

 ( 5.1) 

 

In such a case, our sampling functionals are given by –  
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And as usual, the GSE matrix of the system of equations for such a sampling scheme is given 

by–  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 2 3

1 2 3

1 2 3

, , ,

, , ,

2 , 2 2 , 2 2 , 2

x y x y x y

x y x y x y

H u v H u v H u v

H u c v c H u c v c H u c v c

H u c v c H u c v c H u c v c

+ + + + + +

+ + + + + +

 
( 5.3) 

 

We must ensure that it is non-zero for the proper set of frequencies as required by the Papoulis 

GSE. 

The problem of an irregular grid stays the same when adding a rain gauge. The only change is 

to the phase of determining a distinct set of sampling functionals. However, we ourselves added 

the rain gauge, so we are left with a set of distinct lines and our added delta function. 

The phase of treating missing samples stays the same as the two suggested procedures in 

( 3.14) and ( 3.16). For missing samples along a line, we employ the procedure suggested in 

section ( 3.16) which involves integrating along functionals of which missing samples exist. 

For missing samples of rain gauges, we employ the procedure suggested in section ( 3.14) 

which involves no integration but simply constructing a set of linear equations and plugging 

them into the entire inverse problem set of linear equations. 

We stress that we do not require an entire grid of rain gauges but rather a single rain gauge. 

The lack of a grid of rain gauges will be treated within the formalism of missing samples as 

previously shown. 
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5.3 Coverage of other than Rain 

The approach to the covrerage problem and the suggested tool may be generalized to any 

phenomenon which is sensitive to the length of the intersecting link and a cloud. We discuss here 

a different environmental phenomenon which may find an interest in such a tool. 

State of the art fog observation methods include Transmissometers, Satellite systems, Scatter 

meters and even Human observers, all of which are expensive solutions. 

Preliminary results concerning fog monitoring utilizing commercial microwave systems have 

been shown by David et al  [8]. David applied the Rayleigh approximation in order to relate fog 

to attenuation per km-  

LWCγ = Φi  ( 5.4) 

 

where [ ]/dB kmγ is the attenuation, Φ  is an attenuation coefficient which is temperature and 

frequency dependent and LWC is the liquid water content. 

The attenuation coefficient suggested by David is based on the Rayleigh approximation (fog 

drops are generally less than 0.01 cm, small with respect to centimetre microwaves) and is given 

by –  

fχΦ =  ( 5.5) 

 

Where χ  is a known constant which depends on the dielectric permittivity of water and f  is 

the link's frequency. 

After the approximations, the resulting equation, relating between the water vapour and the 

measured attenuation is given by –  

intfL LWCγ χ= i  ( 5.6) 

 

which implies that we may use the procedure suggested in section  2.1 for the sake of 

generating fog maps. 

We would like to stress however, that other than rain, fog may be present in heights where the 

links may miss it. Hence, this technique isn't fully suited for the covrerage of fog. Snow, Hail 

and/or Sleet on the other hand are environmental phenomena which are more suited for this 
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approach. Employing this approach requires a proper mathematical relation between the 

phenomenon's rate and its attenuation. 
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6 Appendix 

6.1 Correlation Function of the Sampling Process 

In this section we present a method of calculating the spectrum of the random process of 

sampling a function with random lines. 

6.1.1 Modeling the Sampling Process 

We begin with the manner by which we model the sampling process. Similar to deterministic 

sampling problem where the sampled function is multiplied by the Dirac comb we must multiply 

a function by a Dirac comb but after integration along a line –  

	 ( ) ( ) ( ), , ,I

n m

f x y f n x m y x n x y m yδ
∞ ∞

=−∞ =−∞

= ∆ ∆ − ∆ − ∆∑ ∑  ( 6.1) 

 

The function ( ),If x y  is the outcome of the integration along a line realization –  

( ) ( )
,

' ', ,

n m

I

L

f x y f x y dl= ∫  
( 6.2) 

 
We parameterize the line by –  

( ) ( )
, , , ,

,

,

0.5 cos ,0.5 cos
:

tan

n m n m n n m n m n

n m

n m n m

x W n x x W n x x
L

y x n x x m y y

θ δ θ δ

θ δ δ

 ∈ − + ∆ + + ∆ + 
= − ∆ − + ∆ +

 ( 6.3) 

 

Where ,n mW  and ,n mθ  are its respective length and angle and ,n nx yδ δ are random variables 

which generate the offset of the line from the regular sampling grid. 

Due to the fact that the line function is equal to 1 only along the line and zero otherwise, we 

may write -  

	 ( ) ( ) ( )
,

2

' ', , ,
n m

n m

f x y L f x y ds x n x y m yδ
∞ ∞

=−∞ =−∞

 
= − ∆ − ∆  

 
∑ ∑ ∫∫

ℝ

 ( 6.4) 

 
 

,n mW  , ,n mθ  and ,n nx yδ δ  are random variables. 

Our desire is to calculate the autocorrelation function of this sampling process. 

We stress that this modeling doesn't consider missing links/samples. 



Page 90 of 101 

 

 

6.1.2 Choice of the Random Variables Probability Distribution Functions 

Enabling the completion of the calculation of the Autocorrelation function requires defining or 

choosing the complementary probability distribution functions. Analysing Figure 2 we see that a 

choice of a uniform distribution for the link angles seams like a reasonable choice assuming we 

are in an urban area –  

[ ], ,n m Uθ π π−∼  ( 6.5) 

 

However, if a sub-urban or rural area is considered, a more complex functional description 

must be employed for the angles' probability distribution function. 

A choice of an exponential distribution for the link lengths seams proper assuming we are in 

an urban area –  

( ) ( )
,

M

Wn m

x W
p x e

λλ − −=  ( 6.6) 

 

The parameter MW enables shifting the function in order to set the minimal length with non-

zero probability. Choice of the decay rate parameter λ  may be done by many ways. We chose to 

estimate it by considering the maximum likelihood estimation (MLE) of the parameter. We 

assume the line lengths are I.I.D. 

The MLE of λ  is then given by –  
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( 6.7) 

 

Finally, a choice of a uniform distribution for the link distances is a valid choice assuming we 

are considering a small urban cell of links –  
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[ ], ,n nx y Uδ δ δ δ−∼  ( 6.8) 

 

However, we limit the range of the links distances to be –  

max ,
2 2

x y
δ

∆ ∆ ≤  
 

 ( 6.9) 

 

In order to prevent switches between line sites 

6.1.3 The Sampling Process's Autocorrelation Function and Spectrum 

Our desire is to calculate the autocorrelation function of the sampling process which we 

modelled in the previous section. 

( ) ( ){ }, ,I IE f x y f x yτ σ= + +ℝ  ( 6.10) 

 

Writing this explicitly we yield –  
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For the sake of simplicity we define –  
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Adopting the suggestions for the probability distribution functions which were suggested in 

the previous section enables calculating the values of ' ', , ,n m n m
A  -  
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( 6.13) 

 

The definition of the integration area ,n m
Γ   simplifies the description. The integration area is 

the result of the integration of ( ),f x y  due to the uniformity of the angle and distances. The 

angle is uniform between π−  and π  and the distances are uniform between δ− and δ . 

This gives us an integration area which is the product of a circle which is shifter within a 

rectangle with an edge which length is equal toδ . This area is depicted in the figure below –  

 

δ

δ

 

Figure 34 – The definition of the integration area ,n m
Γ  

We may write the autocorrelation function as –  
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By defining the function ( ),n mΓ  -  
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We may write –  
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Manipulating the delta functions gives us –  
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We now notice that the second term has only a DC coefficient. 

We write the sampling process as –  
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Where –  
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( 6.19) 

 

This shows us that the the equation above is simply a process of sampling a different function 

( ),n mΓ  with a different DC value. This means that we may easily determine when aliasing will 

occur by considering the spectrum of ( ),n mΓ  with respect to the sampling rate. 
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 תקציר 8

ך אותו קו בו עובר האות היות והם תוצאת אותות הנוצרים ממערכות מיקרוגל הינם למעשה ממוצע מסלולי לאור

- בMesserי "שיטה חדשנית אשר הוצעה ע. אינטרגציה של האות את התופעת טבע אותו הוא חווה לאורך מסלולו

העלתה את האפשרות  להשתמש בעורק , כללה שימוש במערכות סלולר מסחריותאשר , 2007- בLeijnseי " וע2006

 הציעה את השימוש במדידות קיימות Messer,  במילים אחרות.י ניטור סביבתיהמיקרוגל הסלולרי הקיים לצורכ

  .מרשתות סלולריות לצורך ניטור גשם

מיקום עורקי .  הגיאומטריה של עורקי התקשורת הינה שרירותית לחלוטיןMesserי "במערכת אשר הוצעה ע

יצוע משימה זו שואפת לאזן בין ב. הינה משימה מורכבת, י טכנאי תקשורת"משימה אשר מבוצעת ע, התקשורת

השאיפה למינימום של מספר שיחות הטלפון אשר הולכות לאיבוד בשל חוסר בתקשורת תוך מקסימיזציה של המרחק 

  ).על מנת למזער עלויות(בין עורקי התקשורת על מנת לעשות שימוש במספר קטן ככל הניתן של עורקים אלו 

  .יע גיאומטריה שרירותית לחלוטין של פיזור מרחבי של עורקי תקשורתאופטמיזציה מסוג זה מניבה באופן לא מפת

בתזה זו אנו עוסקים בשתי שאלות מרכזיות אשר עולות כתוצאה מהטופולוגיה השרירותית אשר מתארת את פיזור 

אנו עונים על השאלה אודות מהם הדרישות להבטחת כיסוי אשר . השאלה הראשונה היא שאלת הכיסוי. העורקים

הגישה שלנו לפתרון בעיית הכיסוי אנו מסוגלים לייתר מפות כיסוי אשר מציגות את י הפעלת "ע. ר זיהוי ענןיאפש

  .תוך שימוש בשיטה החדשה המוצעת לניטור גשם, הכיסוי המדוייק של ארועי הגשם בישראל

גשם מדגימות של אם ברצוננו לשחזר מפות . השאלה השנייה אשר עליה ברצוננו לענות היא שאלת יכולת השחזור

האם פיזור נתון יאפשר לנו כלל לשחזר מפת "עלינו בראש ובראשונה לענות על השאלה , עוצמות עורקי התקשורת

, כדוגמת תמונה, בעבודה זו אנו פותרים את השאלה הנוגעת ליכולת לשחזר פונקציה דו ממדית ".?גשם בצורה נכונה

אנו לא . ם אנו מתכוונים לסכום ערכי הפונקציה לאורכו של הקוי קוויבאומרנו היטלים. י היטלים קוויים"אשר נדגמה ע

אורכם ואף במרחקם זה , הקווים יכולים להיות שונים זה מזה בזוויתם. מטילים כל אילוץ על הגיאומטריה של הקווים

  .מזה

ואם אכן , מניב פונקציה אשר ניתן לשחזר אותהעורקים תרומתנו היא פרוצדורה אשר קובעת האם סט נתון של 

  .שגיאותהמקסימלית אשר ניתנת לשחזור ללא תדירות המהי , ניתן

  . את פתרונותינו לבעיית הכיסוי ויכולת השחזור על עורקים של ספקית הסלולר הישראלית סלקוםיישמיםאנו מ
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ודותת 9  

 
הסינגולרית חגית מצאה את הנקודה שאני מאמין .  חגית מסר' לפרופתודתיבראש ובראשונה אני רוצה להביע את 

מתי  האשר ידע, כרועת צאןתפקודה הן .  אקדמיחופשהנחייה למתן אופטימלי בין ההאיזון את ה ההיחידה המרכיב

לי ללכת בדרך שלי תוך אפשר להרחיק אותי מכיווני מבוי סתום וכוקטור תמיכה שהראה לי רק את הכיוון הכללי ו

  .אעשהשהכרחי שביצוע טעויות 

 

 ם והצעותיידיונים פור רב שלעל צבר  שלי מקבוצת המחקר של אוניברסיטת תל אביב הודות לחבריםברצוני ל

אוסלנדר אורי , אלעד היימן, עוז הראל, נועם דוד, רקסקי'דני צ, יואב ליברמןמודה ללא הכר לאני . ותמרעננ

 .יההרצאות האינסופיות שלי על תלאות המחקר שלאת בלנות וסלתם בתודה שסב .  אוסטרומצקיויונתן

 

ניטור תחומי הממזג היטב בין - ביןשדה , שאלת המחקר שליכיוון שמשך אותי ל 'זינביץ םיוארטתודה מיוחדת ל

 .סביבתי ומתמטיקה שימושית

 

בו אגשים את יכולת הבלתי נלאית שלה לדחוף אותי לכיוון על ה ,צפי , שלי השניחציאני רוצה להודות ל, לבסוף

 א טיוט בדפי מול המחשב עם פח אשפה מלאתי ישבהן עם השעות האינסופיות בהסבלנות שלה להשלים, החלומות שלי

 .יםטמקומ

 .היית אתפשוט על כך שבעיקר  והמטרות שליקידוש ל, לסבול את מה שהעברתי אותךהיכולת תודה על , צפי
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ש איבי ואלדר פליישמן"הפקולטה להנדסה ע  
ש זנדמן סליינר"בית הספר לתארים מתקדמים ע  

 
כולת הכיסוי והשחזור של פונקציות דו ממדיות על י

ים בעלי גיאומטריה שרירותית קוואשר נדגמו לאורך 
  למיפוי שדות גשםיישוםעם 
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